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Motivation

Bose-Einstein Condensate Vortices
(1995) (1999)

Common theme:

many-body

system

Temperature T,
particle number N

® closed system (isolated from
environment)

e gstationary states in thermodynamic
equilibrium

Many-body physics
with cold atoms

Mott Insulator Fermion superfluid
(2002) (2003)

thermalization/equilibration (PennState, Berkeley,
Chicago, ...)

sweep and quench many-body dynamics (Munich,
Vienna)

metastable excited many-body states (Innsbruck,
MIT, ...)



Motivation

Bose-Einstein Condensate Vortices
(1995) (1999)

Common theme:

many-body

system

Temperature T,
particle number N

® closed system (isolated from
environment)

e gstationary states in thermodynamic
equilibrium

Many-body physics

with cold atoms

Mott Insulator Fermion superfluid
(2002) (2003)

Novel Situation: Cold atoms as open many-body systems
(" ) drive

(e.g. laser)

S
\_ dissipative environment )

i N

° natqral_ occurrences ® use manipulation tools of
of dissipation quantum optics

v \

= no immediate condensed = drive/dissipation as dominant
matter counterpart resource of many-body dynamics!

= defines non-equilibrium situation in many-bodyv stationary state



Plan of the Lecture

e Open system character on various length scales:

(

quantum optics many-body physics

microscopic thermodynamic long wavelength
statistical mechanics

Part I:

Part II:

Dissipation Engineering and Many-Body Physics in Open Atomic Systems

Open quantum systems Op = —i[H, p| + L[p] —
Dissipation engineering in many- . A_;_._/-;’-‘i""'——_
body systems T 2 e oo
Non-equilibrium phase transitions from / \/ \ e T

competing unitary and dissipative dynamics W

Many-Body Physics and Statistical Mechanics in Open Systems with Natural Dissipation

Keldysh functional integral for open systems

o] _ / DS eiSu @450

Experimental platforms and microscopic
models

Critical behavior and universality

Dynamical criticality in driven-open systems




Part I:
Dissipation Engineering and Many-Body Physics in Open
Atomic Systems

R A




Outline

* Dissipation engineering in

e Open quantum systems many-body systems

Oip = —ilHs, p + £ Y JapJl — ${J8Jas 0} - Z’/;z\/?/;\ff% )

® scale separations in quantum optics e dark states
® quantum master equations e driven dissipative BEC

e Competing unitary and dissipative dynamics

* dynamical phase transition
* non-equilibrium phase diagram



Brief Reminder:
Open Quantum Systems



Open Quantum Systems

drive :
H — HS + HB + Hint environment /
bath
H g ~ W typical scale
— Jf continuum bath of
HB o / dw wbwbw harmonic oscillators

2 quantum jump / Lindblad operators
Hing =i / dw/i(w) [bLJ — b@ polynomial in system operators

linear bath operator coupling to the system



R(wW) A
//
drive environment / /
_—
bath >
wo W
system frequency
—
wo — U wo + U

reservoir bandwidth
Three approximations:

(1) Born approximation: k(w)/wy < 1
(2) Markov approximation: r(w) = const.= k(t —t') ~d(t —t)
wo — V
(3) Rotating wave approximation: wo Y <1 |e>
0 p AR
=S 2z | feeegpnn e
d(\qe“s wo — v = /A  detuning
w | Q] :ir
1%
system Hamiltonian H = (\e>,\g>)( é Sg ) < Zj‘ ) v o v ‘g>

in this example:
jump operator J, = lg)(e|l =0~



Quantum Master Equation
Otprot = —i|Hg + Hp + Hing, prot]

= Eliminate bath degrees of freedom in second order time-dependent
perturbation theory

r 3\

\
Trbath< w "Q .

- J

effective system dynamics from Master Equation (zero temperature bath)

4 !_indblad quantum

3 jump operators
Orp = —i[Hg,p) + 1Y _ JapJl — 3{J1Js" p}

— _/
L|p] Liouvillian operator in Lindblad form

 Structure: second order perturbation theory
« mnemonic: norm conservation J;trp = 0



Open Quantum Systems as Driven Systems

» Most (all?) of the non-equilibrium features to be discussed root

in the driven nature of quantum optical systems

» Consider two-level system: | €>
 without drive, upper level inaccessible

>

e drive / pump means to put in large amount of energy. Does
“ ” w

not happen “spontaneously Uy

* large scale separation: bath may look as zero temperature

\ 4 \4 *
reservoir though it is not (cf. radiation field) |g>

 Implications:

* no obedience of the second law of thermodynamics (state purification)

 independent unitary and dissipative dynamics (different physical origins)

* no guarantee for detailed balance, once unitary and dissipative dynamics compete

» NB: contrasts equilibrium: relaxational (dissipative) and reversible (coherent) dynamics have
the same origin (Hamiltonian)

= such conditions may be achieved in many-body systems as well (though not generic)



Driven Dissipative BEC

NLEES



Formulation of the Goal

® Devise purely dissipative evolution which drives into desired pure state

0p =~ + & Jap Tl = HI}Tas )

p(t) ey Pss E D) (D)| pure state (“dark state”)
mixed state
typically
|1D) = |BEC) first example

e Contrast this to standard thermodynamic equilibrium scenario:

p~e MEsT 1201y (B

cooling to ground state by coupling to a zero temperature reservoir



Dark States in Quantum Optics

e Goal: pure BEC as steady state solution, independent of initial density matrix:

p(t) — |BEC)(BEC| fort — o

e Such situation is well-known quantum optics (three level system): optical pumping

(Kastler, Aspect, Cohen-Tannoudji; Kasevich, Chu; ...)

f n‘a p(t) == lg+) {9+

g+1)
=  Driven d|SS|pat|ve dynamics “purifies” the state

=  |g1)is a“dark state” decoupled from dissipative evolution

=  More generally: dark state is a dissipative zero mode (time evolution stops)

Jo|D) =0 Va L=k) JapJh —3{IJasp}

Hilbert space

 [nteresting situation: unique dark state solution
= dissipation increases purity Oy tr(pQ) <0 &A f—‘/‘\
= directed motion in Hilbert snace s ST WA oY '\




SD et al. Nat. Phys. (2008)

Dark States An analogy F. Verstraete et al. Nat. Phys. (2009)

e optical pumping: three internal (electronic) levels (Aspect, Cohen-Tannoudji; Kasevich, Chu)

N~ A

|8+1)
bright state
D) ~1g41) +19-1) |B) ~ [gs1) — lg-1)

e 1 atom on 2 sites: external (spatial) degrees of freedom

— I\

symmetric antl-symmetrlc
e N atoms on M sites

\ =l \BEC’)z% Za;[ N|f0ac>
AL (T4)

- drive and dissipation: many-particle optical pumping into



Driven Dissipative lattice BEC O = 1S Jupdl — LTI p)

 Consider jump operator (1D): W
Ji = (a} +al, ) (a; - JAVAYA)

KA

* Interpretation: any antisymmetric component of a particle’s superpositon on i, i+1 mapped

onto the symmetric one

N
(1) BEC state is a dark state:  |BEC) — % (Yaf) Ivac)
: 14

JZ‘BEC> =0 Vs [(a; —ai+1),Za};] =0

¢
(2) BEC state is the only dark state:
. (CL,:-r + %T+1) has no eigenvalues (on N-1 particle Hilbert space)

o (ai — ai+1)has unique zero eigenvalue

(a; — ajp1) Vi — (1 — €')a, Yq



Driven Dissipative lattice BEC

(3) Uniqueness: IBEC> is the only stationary state (sufficient condition)

If there exists no subspace of the full Hilbert space which is left invariant under
the set{.J,, }, then the only stationary states are the dark states

(4) Compatibility of unitary and dissipative dynamics g rﬂs @
|D) be an eigenstate of H, H|D) = E |D) ./,):;.
[—o0
p(t) — |D) (D)

e |Long range order in many-body system from quasi-local dissipative operations
e Uniqueness: Final state independent of initial density matrix

e Criteria are general: jump operators for AKLT states (spin model), d-wave and
topological states (fermions)



Physical Realization: Reservoir Engineering

® driven two-level atom + spontaneous
emission

e)

optical
I photon

g)

® coherent drive: optical laser light

® reservoir: vacuum modes of the
radiation field (T=0)

W ~ 2T X 1014Hz

Quantum optics ideas/techniques

?

(many body) cold atom systems

® much lower energy scales...



Physical Realization: Reservoir Engineering

® driven two-level atom + spontaneous ® trapped atom in a BEC reservoir
emission

laser 4\1\'\'\‘\(
—_— photon

—5le)
optical BEC
€2 I photon
8)
® coherent drive: optical laser light ® coherent drive: Raman laser
® reservoir: vacuum modes of the ® reservoir: Bogoliubov excitations of the BEC

radiation field (T=0) (at temperature T)

o~ 21t x 10'*Hz Wpg ~ 2T X kHZ




Physical Realization: Reservoir Engineering

e |dea: immersion of coherently driven lattice system i

target setting

nto BEC reservoir

jump operators

Jz' — (CL;r + CL,}L_I_l

)(a;

— Qiy1)

E
£ -
(N

auxiliary system {

m/ %Nz

system of interest {

geometric lattice setup: A-type level structure via optical superlattice

(b) A

st N eee——

lA
1

r r
+0 -0 +0 -Q)
r. r ' r

<ij> j

>



Physical Realization: Reservoir Engineering

e |dea: immersion of coherently driven lattice system into BEC reservoir

target setting

described jump operators Jz' = (CL;-r + a

.‘.
1+1

J(a; — ait1)

(i) Drive: coherent coupling to auxiliary system with double wavelength Raman laser

Rabi frequency

X b

auxiliary system {

system of interest {

aj an

‘ Alaser = 2Alattice

£

driving laser N,

",

$

pairwise antisymmetric drive

leTal -+ QQbTaQ + h.c.
= Qb' (a1 — az) + h.c.
for Q2 = Giﬂ-Ql — —Ql



Physical Realization: Reservoir Engineering

|dea: immersion of coherently driven lattice system into BEC reservoir

target setting

described jump operators Jz' = (CL;L + a,;-f“)(ai — ai+1)
(ii) Dissipation: phonon emission into superfluid reservoir
reservoir
<2 | superfluid
driving laser :§ P

auxiliary system {

system of interest {

+0 i&g

aj

KA
az

reservoir

i,

g ",

e microscopically: s-wave interaction of

system and bath particles

e BEC in bath gives standard go system-

| PR N PR W RS



Cooling into BEC with another BEC?

reservoir
laser % g

Whd § ",
e band separation wp, largest energy * reservoir BEC = reservoir of Bogoliubov
scale in the problem phonon excitations

e hastemperature Tgpc

~

TBrc < W

bath occupation
;\n( ——bd ) < 1

TBEC

= effective zero temperature reservoir
= can reach system entropies well below bath (possible due to pumping, cf. fridge)



Physical Realization

Summary:

Long range phase coherence from quasi-local dissipative
operations

- Coherent drive: locks phases
- Dissipation: randomizes
- Conspiracy: directed motion in Hilbert space, purification

Hilbert space

CLd—

dark subspace

The coherence of the driving laser is mapped on the matter system

Setting is therefore robust (commensurability condition on driving
and lattice laser)



Competition of Unitary vs. Dissipative Dynamics

' T T T

thermal state

SD, A. Tomadin, A. Micheli, R. Fazio, P. Zoller, Phys. Rev. Lett. 105, 015702 (2010);
A. Tomadin, SD, P. Zoller, Phys. Rev. A108, 013611 (2011).



Physical Picture: Nonequilibrium Phase Transition

e Nonequilibrium master equation evolution: drives into BEC with rate
- = —ilH Pl + Lp

e Compare to superfluid / Mott insulator quantum phase transition

= competition between kinetic and interaction energy

1/U,, Interference pattern

M. Greiner, |. Bloch, T. Hansch et al.,
Nature Jan 3 2002

20 F

ﬁ-
Mott lobes, Lo

quantized particle
number

superfluid,
fixed phase

(T —— superflwd Mott back to superflwd



Reminder: Mott Insulator-Superfluid Phase Transition
H=—JY blbj—pd f;+ 10 (R —1)
(4,5) i i

» Hopping J favors delocalization in real space: ® Interaction U favors localization in real
space for integer particle numbers:

Mott state with quantized particle no.

» Condensate (local in momentum space!)
» Fixed condensate phase: Breaking of phase

rotation symmetry ® no expectation value: phase symmetry intact
(unbroken)
(bi) ~ €'
i p——] e |le][e][e]][e]
>

= Competition gives rise to a quantum phase transition as a function of

U/J



Physical Picture: Nonequilibrium Phase Transition

e Nonequilibrium master equation evolution: drives into BEC with rate
- = —t[H,pl+ Lp

H=-7" ala; {U) " al?a?  Competition >

<t,7> 1

e Analogy to superfluid / Mott insulator quantum phase transition

| = r—— [ ][e][e]]e]]e]
>U/J
* enhancement of superfluidity: kinetic energy J driven dissipation K
* suppression of superfluidity: interaction U interaction U
= Expect phase transition as function of J / U Y / U

= Question: What are the true analogies and differences to equilibrium
(quantum) phase transitions?



Mixed State Gutzwiller Approach

e Argumentation must be based on equation of motion

e Strategy: approximation scheme interpolating between limiting cases

k> U k<< U

dissipative condensate see below!

e Implementation: Gutzwiller product ansatz for the density operator
p(t) = H pi(t)
e onsite (quantum) fluctuations treated exactly

e (connected) spatial correlations neglected
e allows to describe mixed states (unlike zero temperature Gutzwiller)

= Nonlinear Mean Field Master Equation for reduced density operator

e We will additionally account for a finite hopping -/



From Weak to Strong Coupling

Weak interactions: dissipative Gross-Pitaevskii equation (coherent states)

Ot = —i(=T Y o + Ulhel*pe) = 26 Y (0 — Yo + 93 — b [ther)

(£r1e) (€1

Strong interaction destroys the phase coherence: _
dephasing & average out

transformation to rotating frame V = tUn(n=1)t /

annihilation operator in rotating frame  VhY/ ~1 = ¢~ tUnt} — Z eVt n) (n|b

= suppression of off-diagonal order " \N w
at dark state

Master equation reduces to
Dvpe = k(0 + 1)(2bepb] — {bfbe, pe}) + 126 pebe — {beb}, pe})]
Thermal equation with thermal (mixed) state solution

= the svstem acts as its own reservoir



Dependence of the Steady State on the Interaction

interaction U initial coherent state for any U
n=1J =0, zKt =0,107*,...,10?

] Loy Lo Dy e

time

.
=~
L

1 U-dependent
02- steady state

superfluid order parameter
a)

0( 1 - W*Z )3
superfluid critical  thermal

Nonequilibrium phase transition between pure and mixed state,
driven by a competition between unitary and dissipative dynamics
* Development in time of the non-analyticity at the critical point

e Shares features of:
e Quantum phase transition: interaction driven
e C(Classical phase transition: ordered phase terminates in a thermal state

* No signature of commensurability effects (Mott) due to strong mixing of U



Analytical Approach in the Limit of Low Density

e Many-body problem: relevant information in the low order correlation functions

e Study the equations of motion of the correlation functions

{((bz)nbznﬂ in principle: infinite and nonlocal hierarchy

e Introduce a power counting:| by ~ \/n, bz ~ /N

and keep only the leading order for n — 0

= Infinite hierarchy exhibits a closed nonlinear subset for low order correlation functions



Critical Exponent of the Phase Transition

Critical exponents can be extracted from approaching the
phase transition in time

Expect form of the order parameter evolution

e—mQt 5
‘¢(t)‘ ~ —N real part of lowest E
e eigenvalue: “mass”
At criticality: zero eigenvalue and thus dominant polynomial decay ° ' v
<

e Numerical Result (high density):

1.0

n=1,J=0,2Kt=0,10"1,...,10°
T T T T T T T T T S ST T T N S N B A

m?2 <0 m2>(

e Analytical Result (n — 0) :

at criticality, Landau-Ginzburg type
cubic but dissipative nonlinearity

+ exponential
runaway
. scaling o ©
< ) ~ O O Vv n
— X
o~ 1/2 initial %
00 transient

()] ~ 72,

a=1/2

2 1

0 l

log,q(1/1)

= Critical behavior could be studied experimentally from following the time evolution of

Mean field value as expected.
But governs the time evolution.



Order-order phase transition at weak coupling

e qualitative picture: weak damping in vicinity of dark state (linearized field equation)

q—0: kq~~r2n+1)g

dark stateat q =0

e the scale Un competes with hopping and dissipation
e there always is a |q.|where the competition is of order unity

= can expect qualitative effects



[
-~

o

Linear Response around Homogeneous State

e Imaginary part of the Liouvillian as function of quasimomentum, ,J << K

20 . r

10

5

0.8 F

0.6

0.4

.2

0.0

|

—0.10 —0.05 0.00

(,‘)” '." "

100 sites, high densities, full mean

field system

| 0.0000

1F —0.0005
~0.0010
~0.0015

(S

0

e
10 " "
\1:___L/
gl i
1
—0.10 (;.().") w00 0,05 0.10
0.0015 . L .
. 0.0010F 4\ .
, O} ! . ~
< 0.0005 F i

T

T

1.0 —0.5

Infinite system, low densities, 7x7
linear system of EoMs

= Existence of dissipatively unstable modes is a universal feature of the regime J << K

= |ow densitv limit: the unstable modes belona to sinale narticle sector



Reduction to the Low-Lying Modes

e Adiabatic elimination of the fast-decaying modes (two times)

875 v 1 M1 1 Mlg v 1 collection of low
0=0,0, — May Moo 0, density correlation

functions

solve for the fast modes W, and obtain slow modes equation only

e Low momentum equation of motion for of the condensate fluctuations only

9 Aty N [ Un+eq—ikg Un+9unkg A,
\AYE, ) T\ —Un—9unkg —Un — eq — ikq AY*

bare hopping at low momentum bare dissipative rate

= renormalization of the off-diagonal terms
= absent in the dissipative GPE



Origin of the Instability

renormalization correction

e Complex spectrum of the low-lying single particle excitations: f

00
700
GOO
ol

=~ 400

300
200
100

’Vq — K/q _I_ ZC’(]‘,

¢ =+/2Un(J—9Un/(2z2))

Interpretation: Below a critical value

J=9Un/(2z)

the speed of sound becomes imaginary.
This term always dominates at sufficiently small momenta. Its sign is opposite to Kq

The fate of the system beyond linear response:

J

|

1

!

!

]

1

Acpw I

1

1

|

1

|

1

|

& W<

. i"
~ O e

(0.3
0.6
0.4
0.2

1.0 2.0
’h‘ [_l“"o‘

3.0

1.0

0.0

5.0

"‘\\\ e

~— ~— - -

— — — |~

density profile signature:
spontaneous breaking of
translation symmetry

maximum instability
momentum transmuted
into CDW wavelength

The dynamical instability is fluctuation induced, a weak coupling phenomenon, and an



The Steady State Phase Diagram

(2r)

I T T T T

thermal
n =20.1 analytical

n = (.1 numerical (linear instability)

4
n=1
:
", 6@6\ 1',
2k ; 690 I condensed, |
S NV ad homogeneous
'l -

() {' 1 1 | | |
( 3 2.0 ;

l.:
v ] ',A"" K

o
ot

3.0

Strong coupling second order phase transition to a thermal-like disordered state

Homogeneous dissipative condensate is unstable against CDW order for
infinitesimal interaction

Condensed phase and homogeneous condensate can be stabilized by finite
coherent hopping



Summary and further aspects

By merging techniques from quantum optics and many-body systems:
Driven dissipation can be used as controllable tool in cold atom systems.

» Pure states with long range correlations from quasilocal dissipation
* New many-body physics: Nonequilibrium phase transition driven via competition of unitary and

dissipative dynamics

 Additional physical platforms for dissipation engineering: trapped ions, microcavity arrays
» Bosons: What is the nature / universality class of the dynamical phase transition?
» Fermions: dissipative pairing and targeting of topological states of matter



Part Il:
Many-Body Physics and Statistical Mechanics in open
systems with natural dissipation




Outline

Keldysh functional integral for open systems

oT[®] _ / DBl Sar (8450

®* mapping quantum master equations to
functional integrals

* responses and correlations

e Critical behavior and universality

* reminder: criticality in equilibrium
® universality

e Experimental platforms and
microscopic models

Bragg mirror

Bragg mirror

microscopic derivation for stochastic
exciton-polariton models

symmetries and low momentum dynamics

Dynamical criticality in driven-open systems

driven-dissipative

r ko

Key Questions:

* universality out of equilibrium?

0(2)

* relation to equilibrium criticality?
e Thermalization, decoherence?



Motivation: Driven-dissipative many-body dynamics

experimental systems on the interface of quantum optics and many-body physics

Bragg mirror

Driven-open Dicke models

P7777777777774

[<]»

P< Py

->

b R7777777777774

P>P.

>

Baumann et al., Nature 2010

exciton-polariton systems in
semiconductor quantum wells

Bragg mirror

Kasprzak et al., Nature 2006

Coupled microcavity arrays: driven
open Hubbard models

~ Y \'r’* ~

! g (5 ;,,
ey -
- \'\: =
' mICrOWaVe

K resonator

- . ”C

sc qubit

Koch et al., PRA 2010

e other platforms (light-matter):
=  polar molecules

=  optical Feshbach resonances
= trapped ions

=  nanomechanics



Keldysh Functional Integral for Open Systems

il [®] _ / DEPeiSm [P+5)



Why working with Functional Integrals?

e Feynman’s formulation of quantum mechanics o

REVIEWS OF
MODERN PHYSICS -

Advantages of the functional formulation of
quantum field theory

general:

e unified language from quantum dots to
Vorume 20, Numser 2 AprriL, 1948 qu antum gravity
e powerful techniques: diagrammatic
Space-Time Approach to Non-Relativistic perturbation theory; collective variables;
Quantum Mechanics renormalization group
R. P. FEYNMAN
Cornell University, Ithaca, New York o non-equilibrium KeldySh
Non-rclz‘nivislic quantum mcchanic‘s.is formulaltzd here in a different way. It is, howc.v.er, ) Closer to the I’ea|-tlme fOI’mU|atI0nS of
mathematically equivalent to the familiar formulation. In quantum mechanics the probability i
of an event which can happen in several different ways is the absolute square of a sum of quantum meChar"CS
complex contributions, one from each alternative way. The probability that a particle will be
found to have a path x(¢) lying somewhere within a region of space time is the square of a sum . . e
of contributions, one from each path in the region. The contribution from a single path is L y|e|dS dll’eCﬂy Observable quantItIeS
postulated to be an exponential whose (imaginary) phase is the classical action (in units of %) H
for the path in question. The total contribution from all paths reaching x, ¢ from the past is the (responses and COI‘re|atI0nS)
wave function ¥(x, £). This is shown to satisfy Schroedinger’s equation. The relation to matrix
and operator algebra is discussed. Applications are indicated, in particular to eliminate the [ |nd|spensab|e for non-Ham|Iton|an
coordinates of the field oscillators from the equations of quantum electrodynamics.
systems:
1. INTRODUCTION classical action?® to quantum mechanics. A proba- L disorder infinite harmonic
b.l- ]n d .q . l - h .
T is a curious historical fact that modern P!ty amplitude is associated with an entire - . |
quantum mechanics began with two quite motion. of a pa'rticle asa i:unctim.l of timt'e, rather ® dISSIpatlon bathS.
different mathematical formulations: the differ- than‘ snmpl)f with a position of the particle at a
ential equation of Schroedinger, and the matrix particular time. o open the powerfUI toolbox of quantum

algebra of Heisenberg. The two, apparently dis-
similar approaches, were proved to be mathe-
" matically equivalent. These two points of view
were. destined to complement one another and
to be ultimately synthesized in Dirac’s trans-
formation theory.
This paper will describe what is essentiallv a

The formulation is mathematically equivalent
to the more usual formulations. There are,
therefore, no fundamentally new results. How-
ever, there is a pleasure in recognizing old things
from a new point of view. Also, there are prob-
lems for which the new point of view offers a
distinct advantage. For example, if two systems

field theory for many-body non-
equilibrium situations



Basic ldea: Keldysh functional integral

e (Compare: .
P U(t,to) _ e—zH(t—to)

e Schroedinger equation: evolving a state vector

00 (E) = HIENE) = [6)(E) = Ut o)) (o)

e Heisenberg equation: evolving a state (density) matrix
Oip(t) = —i[H, p(t)] = p(t) = U(t,to)p(to)U' (t, to)
e identical for pure (factorizable) states p = |¢) (V|

e First case: functional integral via “Trotterization” of time interval and insertion of coherent states:

iH(t—to) __ 71s - N t — to
e —]\;E}noo(1+z5tH) ="

VY e \ \/TV ) (to)

= single set of degrees of freedom for vector evolution

= analogous procedure for thermal equilibrium: formal ﬁnalogy of evolution operator €
and “imaginary time evolution operator” poq = €



Basic Idea: Keldysh functional integral

e (Compare: .
P U(t,to) _ e—zH(t—to)

e Schroedinger equation: evolving a state vector

00 (E) = HIENE) = [6)(E) = Ut o)) (o)

e Heisenberg equation: evolving a state (density) matrix

Oip(t) = —i[H, p(t)] = p(t) = U(t,to)p(to)U' (t, to)

e identical for pure (factorizable) states p = |¢) (¢)|

e Second case: “Trotterization” on both sides:

e =) = lim (14146,H)"  5-t0

N — o0 N

(\/\/ V'V o(to) V'V \/\L»

: U Ut L

= two sets of degrees of freedom for matrix evolution



Basic ldea: Keldysh functional integral

e (Compare: .
P U(t,to) _ e—zH(t—to)

e Schroedinger equation: evolving a state vector

00 (E) = HIENE) = [6)(E) = Ut o)) (o)

e Heisenberg equation: evolving a state (density) matrix

Oip(t) = —i[H, p(t)] = p(t) = U(t,to)p(to)U' (t, to)

e identical for pure (factorizable) states p = |¢) (¢)|

e Finally, we are interested in a “partition function”

Z =trp(t) = trp(tg) =1

YV o VY

< R X
=t AR o AR s o

= the trace contracts the evolution times
= information on all stages: {9 — —00,1f — 400




Implementation: Keldysh integral for quantum master equations

e Goal: Functional integral representation of “partition function” for the quantum master equation

Op=Lp=—i[H,pl+ > ko (2LapLl, = {L]La,p})

e j.e. representation in the basis of coherent states of

Z = trp(t)

e Step 1: formal solution of the master equation

e master equation not “separable” (action of L, from both sides simultaneously)

e Dbut linear in the density matrix: solution with “superoperator”

p(t) = e tL o0 = Tim (14 6,L)" po g Lol

N — o0 N

= unravelling/meaning in terms of concatenated infinitesimal time steps

= in each of them, apply rhs of the master equation



Implementation: Keldysh integral for quantum master equations

Po) =1

e partition function:

Z@zﬁwm=ﬂ<

N
lim <1 + 5,§l)£)

N — o0

e now insert coherent states after each time step:

VV o VY

A

e Coherent states (bosons) — eigenstates to the annihilation operators a;:

e Reminder:

* properties: ailg) = i), (dla} = (4|6
o) = eXiia] |vac) explicit form
B|p) = eXitidi (p|¢p) = e2i®i® overlap and normalization

Iroak = [ 1, @e— 26191 (g completeness

a Nlnta Tha Araatinn nnaratnre An nnt hawva ainanctatac



partition function:

Z@zﬁwm=ﬂ<

N
lim <1 + 5,§l)£)

N — o0

Implementation: Keldysh integral for quantum master equations
Po) =1
e now insert coherent states after each time step:
VV o VY

tf:‘|‘00< 5 }toz—oo
AN . AN

(1-+072) (vv)} V)] \”)

6101+ | (1402 (-1 Mor-14 ] [ -) (o1 )] lén-Hon-|

e mathematically:

Z(t) = Tr (v [(1+5§2)£) (v

e evaluate step [




Implementation: Keldysh integral for quantum master equations

e evaluate step I

o0 )il | (1+872) (r1a)(@cavl- o)1) 1o Yo |
= NP X D1l o1 X i1+ - | P11 -1 ){s-] factor 1

)

+#|¢z+><¢z+|H|¢l—1+><¢l—1+| el i1 )1 -1 -]

(D

_%|¢l+><¢l+|¢l—1+>(¢l—1+| i1 NP1 - | H i) 1|
6" " kel MPLILL LG X D1 P11 b1 Ip- i

Heisenberg commutator

dissipation
(anticommutator term)

—5 Z PO 70 YT 1T 7 YA [OO YRR (/YRR L O 1 (Y

+0" > 2l WO L1 X bir] A1 N ML )| fluctuation

(quantum jump term)

e for normally ordered operators H, LLLQ, L, LL

each matrix element can be computed, e.g.

|¢l+><¢l+|H(bTab )|¢l—1+><¢l—l+| — H(¢7+’ ¢l—1+) |¢l+><¢l+|¢l—1+><¢l—l+|-

= time-independent operator valued Liouvillian --->
time(l)-dependent complex valued Liouvillian functional



Implementation: Keldysh integral for quantum master equations
e time(l)-dependent complex valued Liouvillian functional
L b1 s b121)
= = (H b0~ H 0,
=3 ko ((LILy) @1r 0110 + (LELL) G18110)) + ) 2KaLo( B, by DLLG] . 61,

dordo; —¢* b,
e factor 1: remember the completeness relation and overlaps 1= /H %6 %) (o]

e w0 | WD [ W Dio 14| i1 Y P 1| Y py_|e P2
= T |, Bl A W] €
= 090, 1P ) Dr1+]-- | Pi—1- )P e_i‘sgl)‘p?—iatqjl—,

= gives rise to time evolution on the contour

e |ast step: take the continuum limit in time graining,

5§l> —+ 0, N — o0



Markovian dissipative action on the contour

e Markovian dissipative action

’f
§ = f dt (¢,(Did,¢, (1) = ¢~ (id,p_(1) — iL(B1(1), (1), p~(1), p_(1))).
L=—i(Hy —H )= #o (2LasLh -~ Lh Loy — Ll _La)

“ Hy = H(¢%, ¢.) ete.
= recognize Lindblad structure

= simple translation table (for normal ordered Liouvillian)

+ contour
. . . :(
e operator right of density matrix -> - contour {
e operator left of density matrix -> + contour >
- contour

e Functional integral representation of partition function

Z = trp(t) = f D[D,, D] PP =1. Oy = (¢, L)

product of individual measures
in each time step

= the partition function expresses conservation of probability
= no direct physical information (unlike equilibrium: log Z ~ free energy)
= physical information is in the correlation functions



Physical observables

correlation functions: field insertions on the contour

¢% (%) P+ (1)
£ 7 »
v

compute them: introduce sources (cf. Stat Mech)

example

Z =Tr(l-p) =

(1)

Zljy, i) = (el JUrditi—eZtec)y

(TeloT (H)o(t)]) =

_ 522[j+7 ]—]
0j4(¢)05L (')

i=0

7[0,0] = (1) = 1

normalization

NB: Functional integrals always
compute time-ordered correlation
functions



Correlation vs. response functions

e two basic types of experiments:

e correlation measurements: e response measurements: probe
study without disturbing system with (weak ) external fields

eg. quantum optics

study the photon output classical electromagnetic waves

(e.g. 9 (1))

e directly delivered in the functional framework via basis transformation: “Keldysh rotation”

<¢c) o 1 <§b+ + §b) “classical field”: center-of-mass coordinate

(e.g. transmission/absorption experiments)

¢q ¢+ — ¢_ “gquantum field”: relative coordinate

V2

e classical field can acquire finite expectation value (e.g. Bose condensation)
e quantum / noise field cannot



Correlation vs. response functions

e the action written in this basis:

A
S = f (¢j, ¢2)( OR ;)K) (g;) + interactions.

W,

= redundancy of the +/- basis eliminated (zero entry)
= the matrix is the inverse single particle Green’s function:

e equation of motion (action principle):

S
367 0o PA |
55% — <PR PK> (2:) ; 0 (exact for free theory only)

T
G—l

e (Green’s function

G—l oG = 15(w o w’)é(q . q) (Green’s function diagonal in

frequency/momentum space)

= single particle Green’s function/propagator:

GE @GR
G:(GA o) GK = _gEpKgA



Correlation vs. response: Interpretation by example

e master equation for decaying cavity:

Oip = —ilwoa'a, p] + k(2apa’ — {a'a, p})

e action:

S = /dt( ay,a ) ( 3 0 ‘ 10 _2"‘.)0 — 1K ) ( Qel ) time domain

10 — Wo + 1K 1K aq CLV(t)
— d_w(a* al) 0 W — W — K Al frequency domain
2m \Pelr Yq 8} — wg—l— il{; 2K g a, (CU)
GR(w)_l

e _observables from the Green’s functions: o GK QR
g/ “ler o

. . _ R
Lorentzian spectral density ~ A(w) = ImG"*(w) = (= wO) e GK — _qRpKaA

 decay of single-particle response: G (t — ) / iw(t—¢" )GE(w) = 9(75_t’)eiW(t—t’)e—ﬂ(t—t’)
w
a(t)

cavity mode occupation 2(n(t)) + 1 = (al(¢)a(t) +
in stationary state :

t)al (1)) =iGE(t —t) = / et GE (W) =1

(n(t — 00)) =0 (t = o0)

= correlation / statistical properties: G B

—_ IR SRS S S NN |G |-



Exciton-Polariton Condensates
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Exciton-polariton systems: qualitative picture

Kasprzak et al., Nature 2006 Imamoglu et al., PRA 1996
. :
. EA 1 photons
[
|
________________ ' [
' !
B . |
1) i ' ’ relaxation
o o K K
h= | = z N £
E Y E [’ .
D l'| =] k kll = m E’E E EEm eXCItonS
i) i3]
lower polaritons
>» Kk

; loss

e experimental setup e “level scheme”

e phenomenological description: stochastic driven-dissipative Gross-Pitaevskii-Eq

| v? | |
006 = |~ — il — ) + (A — i) [6 | 64
/ pump & loss rates \ two-body loss (¢ (8, x)¢(t",x7)) = 7y0(t —1')0(x — %

propagation elastic collisions

mean field theory and non-universal aspects: Szymanska, Keeling, Littlewood PRL



Bose Condensation of Exciton-Polaritons

e Bose condensation seen despite non-equilibrium conditions

= n-equilibrium stationary state:
balance of loss and gain

Kasprzak et al., Nature 2006

e stochastic driven-dissipative Gross-Pitaevskii-Eq

mean field theory and non-universal aspects:

‘ iy n Z(/yp _ /W) i ()\ . ’L/i) |¢|2] ¢ ™  Szymanska, Keeling, Littlewood PRL (04, 06); PR

(07)); Wouters, Carusotto PRL (07,10)

e mean field $o 4

e neglect noise
e homogeneous solutionp(x, t) = ¢g

/ n ’)/P
critical point
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Microscopic Origin EA photons

e Starting point: coupled, open system of excitons and photons

e Hamiltonian contribution: excitons

H — Hex —I_ th —I_ Hint

e excitons: two-level fluctuators > K
H.. = Z ejo'] = Z €; (de — CJ) Spln-feTrmlon ma:plng
) Z — ¢ — ~ ~ .
= spin degrees of freedom “fermionized” A goa
a;-r = d}cj,aj = de

e two independent fermion species,
each obeying Dirac algebra

® two-species fermion bilinears
obey the spin algebra




Starting point: coupled, open system of excitons and photons

Microscopic Origin

Hamiltonian contribution:

IUHUWDS IVI. T'l. O4YllidlISAa, J. NEeelllly, . D. LILUeWUUU, dIAIV.I1cZV0. 1704

E A

photons

excitons

H = Hex + Hpon + Hing
: > k
e excitons: two-level fluctuators
_ , T spin-fermion mappin
Hex—ZEJUJ—ZEJ(dd —C. cj) pi ) | PpPINg
! ! oF =dld; — cle;,
= spin degrees of freedom “fermionized” 4 AT . a5
o =d;¢j,0; = d;
* interpretation:
7t
of i d;
’ > creates state|1)
with exciton
0 A
0) i
creates state|0)
|vac) w. ex. absent
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Microscopic Origin EA photons

e Starting point: coupled, open system of excitons and photons

e Hamiltonian contribution: excitons

H — HeX —l_ th —l_ Hint

e excitons: two-level fluctuators >
_ P
Hex = Z GjO'] — Z €5 (d d — C; CJ) 2D quantum well
J J
= spin degrees of freedom “fermionized”
\
e photons: collection of plane waves with quadratic dispersion incident
photon
S h2p2
<
heodP = hest + by [p2 + p3 + m2,
hQ 2
~ hwyg —|— \ 2D in-plane




IUHUWDS IVI. T'l. O4YllidlISAa, J. NEeelllly, . D. LILUeWUUU, dIAIV.I1cZV0. 1704

Microscopic Origin

Starting point: coupled, open system of excitons and photons

e Hamiltonian contribution:
H = Hex + th + Hint

e excitons: two-level fluctuators

Heyx = Zejaj = Zej(de — C} cj)
J J
= spin degrees of freedom “fermionized”

e photons: collection of plane waves with quadratic dispersion

h2p2

2mph

Hon = ), hwp\ilz)\ijp hwp = hwo +

e hybridization: photon can create exciton coherently

Hiny = Zgj\w ZgJ\I!Jr ATd

E A photons

excitons

hybridization term

e interconversion of photons
into excitons

e formally: cubic non-linearity

® model represents
(Hamiltonian part of) a
multimode laser model



IUHUWDS IVI. T'l. O4YllidlISAa, J. NEeelllly, . D. LILUeWUUU, dIAIV.I1cZV0. 1704

Microscopic Origin E4 1 Photons
e include pump and dissipation: Keldysh formulation
de.; .
o0 @ relaxation
S = dtdt’ A OGN (E A= | G
//—oo Z ‘7( ) J ( ’ ) J( ) dg,j excitons
J Cq.j Bl S R
% 1 / / pump lower polaritons
+ D R0 Dyt ) Up(t) |
loss

e photon inverse Green’s function:

Dy () = 0 ihoy — hwp — ik v/ photons decay: k. > 0
e thOy — Twp +ike  2ikic v bath assumed Markovian

e fermion (exciton) inv. Green’s function and cubic non-linearity
v'excitons are pumped

0 X\ (t) ih0y — € — iy —Aal(?) + “tarmion distribut
oy Y - R ermion distribution
G-l = , Aq(t) , 0 , Aa(t) Whoy + € = s functions”Fp, F- describe
/ ihOy — €5+ ivp —Aa(?) 2072 Fp —Aq(?) exciton inversion (cf. laser)
—)\:l(t) 1thoy + €5 + 1Yz —)\Z(t) 21y, Fo

No=—(Fp — F¢)/2

)‘Q(t) — Zp gj\ij,q(t)/\/i )\cl(t) — Zp gjkpp,cl(t)/\/i



Microscopic Origin

effective polariton action after fermion (Gaussian) integration:

S = / /_ oodtdt’;\I!E(t)D@%)p(t,t’)\pr(t’)

—i Z Tr {ln Gj_l} [\If;;, |
J

due to cubic non-linearity: fermion fluctuation term
is a function of the photon field

Landau-Ginzburg theory: expand to quartic order

here we proceed on the level of the equation of motion
further, we study homogeneous field configurations (mean fields)

IUHUWDS IVI. T'l. O4YllidlISAa, J. NEeelllly, . D. LILUeWUUU, dIAIV.I1cZV0. 1704

E A photons
relaxation
excitons
pump lower polaritons
I >» Kk
§ loss
condensation in zero
momentum mode (BEC)
polariton o
condensate phase adjusting

stat. state

amplitude /

V. p = doV25(p)e st
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Microscopic Origin EA photons

e effective polariton action after fermion (Gaussian) integration:

o0 . relaxation
_ / * — / /
S = / / dtdt' Y W5 (t) Dy (8 4)p(t) o
—00 p b=l il Il
_; Z Tr {ln Gj_l} [\IJ:;, \ij] pump lower polaritons
. ' > K
J § loss
= due to cubic non-linearity: fermion fluctuation term
is a function of the photon field
= Landau-Ginzburg theory: expand to quartic order
e here we proceed on the level of the equation of motion ‘I’q,q =0

 further, we study homogeneous field configurations (mean fields) W p = ¢0 \/55(p)6—wst

05 _ (@wo — /ig — ik — I(Q?(SQSO)J) ®o

from bare photon inverse  renormalization from fermion (exciton) fluctuations
Green’s function generates non-linearity

!
0=

e interpretation: correction due to interconversion processes
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Microscopic Origin

e homogenous polariton equation of motion

1 08
! ) s
0% | = (o — s — irse = 1(630) ) 6o
qap ‘I’c7p:¢0 ~ N -\ g 7
from bare photon inverse renormalization from fermion
Green’s function (exciton) fluctuations

generates non-linearity

. Ny 0 —€5 + 1S /2 4 1y 2 _
[(¢O¢O) — 9 Z j E2 + 2 Ej T
J J T

= No(a1 + ’iCLQ -+ (bl + Zb2)¢*§b + .. )

e in particular: signs of the dissipative coefficients ag > 0,0y < 0

-

in the case of population inversion Vg < 0 exciton fluctuation correction acts as pump

A loss

effective pump exceeds loss: polariton condensation instability oS
ominates
condensation threshold for homogeneous couplings and exciton
energies _ _
J gj = 9,65 =¢
total inversion = NNy = 2K¢Yx /g Jg=1...,m >
pump
dominates

fully analogous to a laser threshold



Polariton Condensation and Spontaneous Symmetry Breaking

e generalize homogenous polariton equation of motion to inhomogeneous one

! V.
e toe o= [SE ity =+ 0=l o DK

/ pump & loss rates \ two-body loss

propagation elastic collisions

e valid for slow/long wavelength modes
e we write the noise field (omitted before)

condensate
density

2_Jp N

e Condensation: overdamped motion in Mexican hat potential

A e for dominant pump: Yp > Y - ‘Qbo
“chemical potential’ = (1 = )\|¢0|2

e an instance of spontaneous symmetry breaking:
Im[¢p

e Equation of motion/action has symmetry of global phase rotations
bo — Py = €%y

e  Symmetry broken by stationary condensed state with definite phase

Relg]



Symmetry breaking and Goldstone Theorem

e Goal: understand the nature of the low momentum modes and comparison to equilibrium
e First key step: Goldstone theorem

e Obtain action from equation of motion by integration wrt. the noise field:

A x 2 :
s— [ (s (e ) (S00) P i)
t,x q PA:(PR)T

_%[()‘ —ik)|¢e(t, X)|2¢c(t, X)gbZ(t, x) + c.c.]}

e this action manifestly has the symmetry / invariance under global phase rotations (U(1) symmetry)

/ fe!
¢c — ¢c — € ¢c for the same rotation angle

Pq — ¢; e Qg ¥



Symmetry breaking and Goldstone Theorem

e (Goal: understand the nature of the low momentum modes and comparison to equilibrium
e First key step: Goldstone theorem

e Obtain action from equation of motion by integration wrt. the noise field:

4 X : V2 _ \
S:/t,x{%(ﬁbz(t,x),ﬁ(t,x))( POR z’(vlp+ . ) ( iqui ) PR =0 = (—g =+ u =il = )/2

100 = 1) 9t %) 26t x)95 (£ %) + e.c] | P4 = (PRt

e Introduce the effective action as the “action plus all fluctuations”

Gir[ ¢ q’qbc’q — D((SSO: q’ 6¢C,Q)€is[¢c,q+5wc,q’¢C7‘J+5‘PC’Q]

/

field expectation value, I _
“classical field” sum over all possible

fluctuation configurations

fluctuation around
“classical field”

e NB: this obtains formally by Legendre transformation of log Z[j:’q, jc,q]
e field equation: generalization of action principle or or

gyt vyt



Symmetry breaking and Goldstone Theorem
e simple proof of Goldstone theorem using the effective action

et 10eneal = /D(dépzqa5¢c,q)eis[¢z>q+59":,q"bc,qJF&PC’Q]

e (Goal: Assume symmetry is broken => there exists a gapless mode (zero excitation energy cost/
zero damping at zero momentum)

w(q = O) — () i.e. study Ww=q= O

o decompose: ['|¢), b, ] = Tp|0), du] + U070, 0r, v, Or, b5y On, oy .. v =1c,q

homogeneous: non-homogeneous
zero freq. / mom. sector

= sufficient to analyze 1’y

e U(1)invariance = Fh[qb;i, gby] = Fh[p,u] Pu = ¢z¢y/ all U(1) invariant combinations,

but nothing else!
1 — IPP' e e’ nnl



Symmetry breaking and Goldstone Theorem

Fh[¢i7 ¢,/] = Fh[p,u] Pu — ¢;l;¢y/ choice of field coordinates (due to

spontaneius SB: wlog)
assume SSB ¢, =g #0  but ¢, =0

e properties of excitation spectrum: R/A sectors of second derivative, (5 ¢2
gap/mass matrix:

82Fh _ Z 82,()“ or'y, Z ap,u apm a2Fh vsatlit(.e: ¢O
Oxi0x; |stat COxi0x; Opy, OXi Oxi OpOpx

— O in R/A sectors

e key implication of broken symmetry: first term vanishes in R/A sectors
due to homogenous “equation of motion”

3Fh 8PM 8Fh ! .
= V1
X Z X 8Pu

= excitation matrix must be of the form (exercise)

A0 ) )\, K real: second derivatives of Fh

M = 2p3 ( .
’ ik 0 ﬂ0=¢g

= U(1) invariance of full theory implies existence of gapless mode (zero eigenvalue of mass matrix)



Nature of Low Momentum Dynamics

e Summary: Goldstone theorem

Consider a theory which is invariant under a continuous global symmetry transformation.
Assume the symmetry is broken spontaneously.
Then, there are gapless modes (Goldstone modes).

= NB: no reference to equilibrium or non-equilibrium nature
= but to symmetry and a qualitative property of the state (SSB)
= no information on the form of the low momentum modes

e now, construct the excitations

e most general form of excitation matrix in SSB phase

PR(w,q) = 6PR(w,q) — M with PR (w=q=0)=0
R 2 A0 R 2 £ A 2 )
M;; = 2p; 0 P (w,q”) =iZw — Aq with 7, A real 2x2 matrices

e for the above polariton action, we have explicitly

. 0 1 .1 (10
7=(50) Aman o))




Nature of Low Momentum Dynamics

e Summary: Goldstone theorem

Consider a theory which is invariant under a continuous global symmetry transformation.
Assume the symmetry is broken spontaneously.
Then, there are gapless modes (Goldstone modes).

= NB: no reference to equilibrium or non-equilibrium nature
= but to symmetry and a qualitative property of the state (SSB)
= no information on the form of the low momentum modes

e now, construct the excitations

e most general form of excitation matrix in SSB phase

PR(w,q) = 6PR(w,q) — M with PR (w=q=0)=0
R 2 A0 R 2 £ A 2 )
M;; = 2p; 0 P (w,q”) =iZw — Aq with 7, A real 2x2 matrices

!
e calculate excitation spectrum from poles of Green’s function or det PR(w, q) =0

e but no matter how complicated, we always have diffusive behavior

w(q) = —iDeg q* for g — 0 DGH>O{;?YK>O

} ),“CF = — in avamnla ahnvuno



Comparison to thermodynamic equilibrium

e in the non-equilibrium situation, we found based on U(1) symmetry:
w(q) = —1D.g q2 forq—0 diffusive Goldstone mode
e in equilibrium symmetry broken phase (BEC), it is well known
w(q) = c|q| forq — 0 propagating Goldstone (sound) mode

= the difference is traced back to the absence of exact particle number conservation out of equilibrium
e here: open system, incoherent particle loss and gain
e equilibrium: closed system, particle number conserved
e formally: additional U(1) symmetry in closed system

e indeed, two symmetry generators on the o (t,x) \ _ [ e 0 oy (t,x)
contour: p(t,x) 1

e we focused above on

A, = (Ck_|_ —|—CE_)/2 7é O,

ayp = O— ie.
ag = (g —a-)/2=0



Comparison to thermodynamic equilibrium

e in the non-equilibrium situation, we found based on U(1) symmetry:
w(q) = —1D.g q2 forq—0 diffusive Goldstone mode
e in equilibrium symmetry broken phase (BEC), it is well known
w(q) = c|q| forq — 0 propagating Goldstone (sound) mode

= the difference is traced back to the absence of exact particle number conservation out of equilibrium

e here: open system, incoherent particle loss and gain
e equilibrium: closed system, particle number conserved
e formally: additional U(1) symmetry in closed system

e closed system: additional invariance under ¢y q
® indeed: Noether charge for aq is the particle number
® implication for mass matrix:

R _o2f A O purely real; plus . .
Mz‘j = 200 < %\ 0 ) further constraints on £, A

e consequence: dominant hydrodynamic sound mode



Critical Phenomena and Universality
(Equilibrium)




Critical Phenomena and Universality (Equilibrium)

e Universality: The art of systematically forgetting about details

planar magnets

T-T. _,

T = T 7

e The experimental withesses: Critical exponents, e.g.

correlation length
" e_r/g/ §~ [T = 00
(@ (1)6(0)) ~ 57

e The exponents:

1Y “‘mass/gap exponent” nontrivial statement:
no more independent exponents *
(i “anomalous dimension” than these!



Critical Phenomena and Universality (Equilibrium)

e Universality: The art of systematically forgetting about details

Bose-Einstein Condensate planar magnets
e The physical picture: universality induced by divergent correlation length

A (07 (1)9(0)) .
~J 7,,—2—|—d—?7 AU 6_r/€

scaling cut off by finite
correlation length

bt At T 21T,



Critical Phenomena and Universality (Equilibrium)

e Universality: The art of systematically forgetting about details

Bose-Einstein Condensate planar magnets
e The physical picture: universality induced by divergent correlation length

A (07 (1)9(0)) .
~J T_z—l_d_n AU 6_r/€

scaling cut off by finite
correlation length




Critical Phenomena and Universality (Equilibrium)

e Universality: The art of systematically forgetting about details

Bose-Einstein Condensate planar magnets

e The description: Renormalization group other systems...

UV: microscopic physics

- - -, - - -
- - . e e . - -
e I T
- .. -
- - - - -
- . . . . - -

Coarse graining

crucial difference:

<

| non-int. systems = Gaussian fixed point
ﬁ ' v=1/2,n=0

interacting systems = WF fixed point

IR: long-wavelength Wilson-Fisher fixed point

- . A



Universality Classes (Equilibrium)

e Universality classes: Memory of symmetries is kept

liquid-gas transition i
carbon-dioxide

)

Bose-Einstein Condensate planar magnets trapped ions

E Symmetries: U(l) ~O0(2)

phase rotations in BEC

Coarse graining

<

2

“O(2) universality class” “Ising universality class” )



Criticality in Driven-Dissipative Many-Body
Systems

L. Sieberer, S. Huber, E. Altman, SD, PRL 2013;
in preparation



Criticality in Driven-Dissipative Many-Body Systems

e Questions and challenges:

e Physics: Understanding the nature of driven-dissipative phase transitions

e Universality class: Can non-equilibrium conditions modify
equilibrium criticality, given massive loss of memory? atvncimir

e Thermalization of driven-dissipative systems?
e Decoherence?

e Methods:

e Construct efficient quantum field theoretical framework for
out-of-equilibrium criticality

T[] _ / D8 Bl Sa (8458



Microscopic model: Many-Body Quantum Master Equation

e universal microscopic model: many-body master equation ( single particle pump )

5
Orp = —i[H, p| + L|p] Cﬂg;gt-g;D

)
H = /Xél (ﬁ — 1) &x + %(¢21¢x)2 ( single-, two-, ... body loss )

clo = [10hpde—3oedlool +  u [[Bepdl— Solbunll +

single particle pump single particle loss

o | 620012 - (61262 o)

two particle loss

cf. Quantum Opitics: cf. Many-Body Physics:
e single mode, H=0, semiclassical e continuum of spatial degrees of freedom: infrared
approximation: effective laser divergence

threshold equations = second quantized operator formalism inappropriate

= need method transfer: develop efficient functional many-body techniques



The Theoretical Approach

Many-Body Master
Equation

translation many-body master equation
table

Cvncroscopic Markovian) Orp = —i|H, p| + L]p]

e Step 1: translation table

Dissipative Action

WT[0] _ / DS PoiSar (8458

N

Markovian dissipative action

Keldysh real time functional integral

= Opens up the powerful toolbox of quantum field theory to
driven-dissipative systems



The Theoretical Approach

Many-Body Master
Equation

translation
table

Microscopic Markovian
Dissipative Action

power counting

Mesoscopic Dissipative
Action

Step 2: Canonical power counting: Classification of relevance of
interactions at criticality

Coarse graining

<

o coarse graining
£ | - coarse graining length momentum

k— 0

= Microscopic quantum model reduces exactly to
phenomenological, classical stochastic model



The Theoretical Approach

Many-Body Master
Equation

translation
table

Microscopic Markovian
Dissipative Action

power counting

Mesoscopic Dissipative
Action

RG flow

Long Wavelength
Effective Action

-y

Step 3: Run functional renormalization group flow

Keldysh real time functional integral

eiF[CI)] _ /Dé‘q)eiSM[CI)—I—(SCI)]

1 —1
o' = %Tr [(F](f) + Rk) 8kRk]

Functional Renormalization Group equation

Discussion of the key phenomena:

= Decoherence
=  Thermalization
= Universality

)

Wetterich, Z. Phys. 93
Keldysh closed syst.:
Gasenzer&, Phys. Lett. 08
Berges&, Nucl. Phys. B 09



Microscopic markovian dissipative action

* * O PA c . * * . *2 *2
S = /t,x{ (¢c7 ¢q) ( R PK) (zq) + 2“{’¢c¢0¢q¢q _% [(A + 7”%) <¢c ¢c§bq + ¢q ¢C¢Q> + C’C']}

* *
qu\ (P::k (Pq . P (Pq\ ,‘Pq
N ‘\ ~ S
. . \\ . \\ . \\\,/, .
e Gaussian sector: inverse K A +iK KA+ K
Green’s function s’ « o’
gb;, ¢c e P (Pq Pe

e retarded/advanced PR(w, q) =w — q2 —p+i(y — *yp) /2

e Keldysh component PR = (v + V)

e Relation to single-particle observables:

K R AN\ 1
—i{P, Por) = (gA % ) = (POR §K>



Structuring the problem by power counting

A
5= [ o) (o fx) (57) + S etk cel |

‘qu (P:; (Pq\ ,‘P;]k
e Gaussian sector at criticality: < /\<+ ix '\7\+ 1%
o o 4>2‘ g gc
e retarded/advanced PR(w, q) =w — q — W —|— ( (’yl — *yp) /2
e Keldysh component PK — 1 (% + Wp)
d— 2 d—+ 2
e Canonical field dimensions: (D] = 5 < g = ;—

e action is dimensionless: phase eZS in the functional integral
e quadratic/Gaussian sector: scaling dimensions of inverse Green’s function known
e intuitive: high order local couplings not relevant at large distances



Structuring the problem by power counting

A
S = / {(cb:,qbz;) ( i f.fK) (ZZ) + 2ESHE D, —3 (A + ir) (657 bt Do) +c.c_}}

$q_ ¢
e Gaussian sector at criticality: KA+ ix
e ¢c
— 0
e retarded/advanced PR(w, q) =w — q2 —p+i(y — *yp) /2
e Keldysh component pPE — (% + ’yp)
d— 2 d—+ 2
e Canonical field dimensions: (D] = 5 < [pg] = —;—

= Local vertices with more than two quantum fields are irrelevant in the RG sense ind > 2

= massive diagrammatic simplification

= identical to phenomenological models of exciton-polariton condensates
(Wouters and Carusotto PRL 06; Szymanska, Keeling, Littlewood PRL 04)

= QOriginal quantum problem becomes a classical stochastic field theory



Power counting and exciton-polariton model

e example of “weak” universality

exciton-polariton two-body quantum
Microscopic Markovian models master equation
Dissipative Action :
power counting
(@)
c
£
. . . . cU . . . .
(MGSOSCOKIC-DISSIpa’[IVG) s driven-dissipative
ction 2 Gross-Pitaevski
S equation
RG flow O
v
( Long Wavelength ) , i
Effective Action . coarse graining universality
€ — OO coarse graining length momentum class

k— 0

= many microscopic models collapse to an effective low energy model
= form dictated by microscopic symmetries
= universality class to be determined by calculation



Power Counting and “Classicality”

e physical interpretation: reduction to classical problem in d > 2
Many-Body Master
1 F defined via Equation

<N ; GK — GRF — FGA tra?astl)?éion

distribution function fluctuation-dissipation relation
Microscopic Markovian
Dissipative Action

e infrared mode occupation enhanced

e same scaling as in thermal equilibrium: Feq — % power counting
e equilibrium fluctuation-dissipation theorem

T ' ' ' (Mesoscopic Dissipative)
Foq = coth o5 = Zn(%) + 1 ! ] Action

2T
[ =sgn(w), T=0 T

1

= no states but ground state occupied

(L

< - classical quantum
— &L w T <:|T — 0

w

\ = states with low energies highly occupied



Power Counting and “Classicality”

physical interpretation: reduction to classical problem in d > 2

1

F~ — GE =GFF - FGA

\ w fluctuation-dissipation relation

distribution function

infrared mode occupation enhanced

same scaling as in thermal equilibrium Feq — 2T
w

similar findings: Mitra et al., PRL 2006 (Ising model); Mitra and Rosch, PRL
2010 (Kondo model)

key differences to equilibrium relaxational models

Halperin and Hohenberg, RMP 76

= arbitrary complex coupling parameters, independent
coherent and dissipative dynamics: driven system at

mesoscopic scale
= thermal equilibrium not enforced

(

Many-Body Master
Equation

translation
table

( Microscopic Markovia

n
Dissipative Action )

power counting

Cvl

esoscopic Dissipative
Action

RG flow

(

Long Wavelength
Effective Action




Open System Functional RG

Evaluation of functional integral via equivalent Functional RG equation adapted to

open system

Wetterich, 93

' 1
Ol = %TI’ [(Fl({:z) + Rk) 8kRk]

/

second field variation

N

infrared regulator
Markovian dissipative action

Ae: I'py=p =295

coarse graining in real space =
integrating out high modes in
momentum space

k
qx,qy —

/ % tai}
- &

Fk:() = F full effective action

mode elimination induces RG flow of
coupling of effective action

solve functional differential equation approximately by systematic

derivative expansion truncation
ordering principle is power counting

closed system Keldysh:
Schoeller, Meden PRL 07

Gasenzer, Pawlowski, PLB 08;
Berges, Hoffmeister, Nucl. Phys. B, 09

Many-Body Master
Equation

translation
table

Microscopic Markovia
Dissipative Action

power counting

Mesoscopic Dissipative
Action

RG flow

Long Wavelength
Effective Action




Truncation

e explicit ansatz

v % 0 70 + KA c oU ou* , e
I'y = /X {(¢ca¢q> (’Lz*at LKA 140 0 > (ig) — <@¢q =+ (’kbﬁ ¢q> +Z’Y¢q¢q}

e workin d=3

e arbitrary complex running couplings allowed

RelU, ImU

e e.g.propagation and diffusion K = A +1iD

e includes all non-irrelevant operators (d = 3)

u

U= U(pc) — 5 (pc — :00)2 T

Pc = ¢: ch

us 3
c (pe — po)

e Runthe RG @w these couplings change with SCD

e




Schematic RG flow

e Flow in the complex plane of couplings

Im A Im 4 (1 Im T
us u ‘ FP action purely
dissipative
K
> >
Re Re Re
non-perturbative initial flow linearized IR flow fixed point

e initial values: I’szO ~ S e universal domain encoding
universality class

e particles propagate
A=Re[lK]~ 1> D =Im[K]
e coherent collisions ~ two-body loss

e three-body couplings subleading



Emergence of universality in numerical evaluation

e Flow in the complex plane of couplings e Extent of universal regime delimited by
Ginzburg scale

universal scaling regime

10}

4
Y

/

~ Ginzburg scale: fluctuations
dominate over mean field

2O i 2 3 21 3 é 7 O_io —‘8 —‘6 _‘4 g 0
z! t
two-body interaction
VE 2
exponential runaway XG ~ 47 D32

fine tuning to critical point)

initial conditions



Main Result: Hierarchical Structure of Non-Equilibrium Criticality

e The inner shell:

e describes static critical exponents

(6(r,t = 0)8(0,1 = 0)) ~ G

§~ | T[=
e result coincides with ab initio equilibrium calculation

n ~ 0.039

v~ 0.716

= equilibrium exponents of O(2) model unmodified by non-
equilibrium condition

=  quantitative benchmark of our real time approach

cf. Guida and Zinn Justin, J. Phys A (1998)
5 loop order epsilon expansion n ~ 0038 (4)



Main Result: Hierarchical Structure of Non-Equilibrium Criticality

e The intermediate shell:

e describes dynamic critical exponent

<¢*(T — 07t)¢(r — O’O)> ~

1
t(d—2@/2

(e introduced in the theory of dynamical critical phenomene?
(Model A - F) Hohenberg and Halperin, RMP 76
e relaxation to thdyn. equilibrium built in
- _J

e result coincides with ab initio Model A calculation

= also dynamical exponent of Model A unmodified by non-
equilibrium condition




Asymptotic Low-Frequency Thermalization

e dynamic exponent coincides with equilibrium dynamical Model A
e stronger result: asymptotic thermalization of driven-dissipative system

e global thermal equilibrium: all subparts in equilibrium with each other

<=> Temperature is invariant under the partition




Asymptotic Low-Frequency Thermalization

e dynamic exponent coincides with equilibrium dynamical Model A
e stronger result: asymptotic thermalization of driven-dissipative system

e global thermal equilibrium: all subparts in equilibrium with each other

<=> Temperature is invariant under the partition

R

¢ temperature




Asymptotic Low-Frequency Thermalization

e dynamic exponent coincides with equilibrium dynamical Model A
e stronger result: asymptotic thermalization of driven-dissipative system

e global thermal equilibrium: all subparts in equilibrium with each other

<=> Temperature is invariant under the partition

T

A
RG: <=> Temperature i qy

(Scale invariant J

4z

‘ pefature T/

RG: tracing out momentum



Asymptotic Low-Frequency Thermalization

e dynamic exponent coincides with equilibrium dynamical Model A
e stronger result: asymptotic thermalization of driven-dissipative system

e global thermal equilibrium: all subparts in equilibrium with each other

<=> Temperature is invariant under the partition

T

A Gy = not true out of equilibrium
= not true for our driven-dissipative system

(Scale invariant J
e c——— at high momenta

RG: <=> Temperature i

4z

‘ pefature T/

RG: tracing out momentum



Asymptotic Low-Frequency Thermalization

e dynamic exponent coincides with equilibrium dynamical Model A
e stronger result: asymptotic thermalization of driven-dissipative system

e we find a scale invariant effective temperature in the universal low-momentum regime:
asymptotic thermalization

numerical evaluation

( o ) 2 2.5
XG ™ Am D3/2 2.
Ginzburg criterion — const. 1.5

Ginzburg scale

qx

—14 -12 -10 -8 -6 -4 -2 0

flow to long wavelength/small
momenta
NB: must be constant in equilibrium



Thermalization: Formal reason

Complex plane of couplings

e IR flow of noise and dynamical couplings locked Im Av l
77Z (g*) — 775/ (g*) s linearized IR flow
't o = / {¢Z 1240 g + c.c. + if_ygb;gbq} + . Re
X Z ~ an7 "y ~J kn’? )

o emergent “equilibrium” symmetry of  i['p_,  Aone ar'é’aJI-tiitzt%u“ﬂiﬁghg?;tgg;f'apted to

Q.(t,x) = D.(—t,x)
2127 1 — —1
Dy (t,x) = Pg(—t,%) + =5-0.0;Pc(—1, %)

e interpretation: (Time reversal) o (Time translations)

e associated Ward identity implies classical FDT with distribution function

2T o Tog = Y

F= =
W 4|Z|

effective temperature



Main Result: Hierarchical Structure of Non-Equilibrium Criticality

e The outer shell:

e describes fadeout of coherent vs. dissipative
dynamics: universal decoherence

coherent two-body elastic
propagation collision
6. A A TN
D K

diffusion two-body loss

e we find:

n- ~ —0.101
e we show:
4 )

= exponent is new and independent of the others

=  the extensions is maximal (no more independent
exponents will be found)

= defines a new non-equilibrium universality class




Independence of drive exponent

e Argument 1: Infrared

e block diagonal form of linearized flow near fixed point

TK
( iy \
Tus
1/7
1/K
Aw
AR

\2%s)

( 0.0525

—0.0002
0.4976
0

o O OO

non-equilibrium

0.0586

0.0317

—0.0526 0.1956
—2.3273 1.9725

0
0
0
0
0

e 4 independent eigenvalues

0

o O OO

relaxational

e structure protected “diagrammatically” (d = 3)

0 0 0 0 \ [ T \

0 0 0 0 Ty

0 0 0 0 Tus
0. 0 0 0 1/Z
100392 0 o 0 1/K

0777216204 0.0881  0.0046y| | Aw
0 :-3.1828  0.2899  0.0363: | A
0 153743 —42.2487 2.1828) \Afs)
equilibrium O(2)

mass exponent 1Y

anomalous dimension 1) P

dynamical exponent 1)z o

drive exponent Ty o



Independence of drive exponent, maximal extension

e Argument 2: Ultraviolet

e the origin of each independent exponent must be associated to an UV scale

oo (67 (1)6(0)) ~ L1 LgZ R

physical length experimentally observed
dimension scaling

e counting UV scales: mass matrix and source terms

Te T 0 —pov +ixvv\ (e T 5 T
I' = : : - |+ + +c.c.)+ ...
[ @8 (L S VY (%) #1260+ s+ c)
e classical O(2) model: (imaginary) mass term, real source term: )
e Model A: plus Keldysh mass term (temperature): +1
e driven model: plus real mass term: + 1

4 independent exponents

= For N = 2 field components, there cannot be more independent critical exponents

=  Extension of equilibrium criticality is maximal



Non-equilibrium universality class

e What is the most general microscopic dynamics compatible with stationary Gibbs ensemble?

SH([D]

875(1) = [—]_ —+ IRO'Z]W

e (€ (4, x)C(F, X)) = 2T5(t — ¢')3(x — x)
R>0

e Proof 1: Stochastic equation of motion: mapping to Fokker-Planck equation, construct stationary solution
(Graham 73)

e Proof 2 (symmetry):

e Use equivalence of stochastic PDE to a functional integral (MSR construction)

7 = / D(®,, P.) expi / o [iaz (atcbc + (1 — 1302)57;50]) +1Tc1>j]<1>q]
X

C

e Check: equilibrium symmetry still present for compatible dynamics
e associated Ward identity implies classical Fluctuation-Dissipation theorem

e Variant 2 allows comparison with driven case:
= Equilibrium symmetry absent in general non-equilibrium case



Non-equilibrium universality class

e global thermal equilibrium is ensured by equilibrium symmetry:

equilibrium dynamics non-equilibrium dynamics
Im A m A
U us Uu
initial flow
» K
e Re K Re
: —>
A ” A
> Im U
infrared flow +
K K
us
/ Re Re
—> —>
e eigenvalue of flow speed e |owest eigenvalue
nr ~ —0.143 n, ~ —0.101

= equilibrium and driven systems are in different universality classes
= physical reason: independence of coherent and dissipative dynamics
= formal reason: difference in symmetry



Observable consequences of driven criticality

e experiments probing the dynamical single-particle renormalized response:

Nnp =171p — Nz
G*(w,q) = — —~
’ w — Ap|q|2 @ =12)+ i Dy|q |2z
\on-universal constan(s/
e ultracold atoms: RF spectroscopy (Jin group, Nature 08)
w =~ Ao|q|2'22 — iD0|q|2'12 peak position and width

e exciton-polariton systems: homodyne detection (Deveaud-Pledran group, PRL 11)
Re GR W Im GR w measured independently
Y Y Y

e necessary resolution: extent of critical domain from Ginzburg criterion
VK )2
Ar D3/2

e fluctuation dominated for XG ~ ( D ~ )\277,2, K2n?

distance from phase
transition



. . ~ 107F = 107
Directions p 7
) 10'2‘ f ‘W o 10°
.f . disordered . , quasi-LRO
1 -15 -10 -5 0 5 10 15 10—15 -10 -5 0 5 10 15
x (um) x (um)

from Roumpos et al., PNAS (2012)
e 2D: exciton-polariton systems as laboratories of nonequilibrium statistical mechanics

A<¢* (T)gb(O)) L. Sieberer, J. Toner, S. Diehl, E. Altman, in preparation
A equilibrium Wilson-
Fisher

equilibr.ium non-egtlil;bnum non-equilibrium

‘Gaus&an S . disordered (rough)
: phase
_ : : : algebraic quasi-long range order
* equilibrium fixed point unstable in 2D :
. K(Ilz nixed point r%levant (Kosterlitz-Thouless phase)
— A :\ r J
v A Y

e Quantum criticality in driven open systems with tailored dynamics
e Different symmetries: N = 1: Driven Rydberg ensembles? (Schauss et al., Nature 2012)
e Systems with coherent forcing (Jaynes-Cummings, Nissen et al., PRL 2012)

e Interacting fermionic systems (Eisert, Prosen, 2010, Hoening, Moos, Fleischhauer, PRA 2012)

- Nlacecifinatinn Af iinihviarealitv in Arivian_Aiceinativia evietame



Summary: Universality in driven-dissipative systems

e Hierarchical structure of criticality with no modification of inner shells:

e static sector

e classical O(2) model

e dynamical sector

e asymptotic low frequency thermalization 7]z — T)5
e Halperin-Hohenberg Model A

e competing unitary and dissipative dynamics

e universal long-wavelength decoherence
e measured by an independent critical exponent

e driven-dissipative systems define new out-of equilibrium universality class

e independence of coherent/dissipative dynamics
e different symmetries compared to equilibrium






Refresher

Open Quantum Systems as Driven Systems

» Most (all?) of the non-equilibrium features to be discussed root

in the driven nature of quantum optical systems

» Consider two-level system: | e>
 without drive, upper level inaccessible

>

e drive / pump means to put in large amount of energy. Does
“ ” w

not happen “spontaneously Uy

* large scale separation: bath may look as zero temperature

\ 4 \4 *
reservoir though it is not (cf. radiation field) |g>

 Implications:
* no obedience of the second law of thermodynamics (state purification)
 independent unitary and dissipative dynamics (different physical origins)
* no guarantee for detailed balance, once unitary and dissipative dynamics compete
» NB: contrasts equilibrium: relaxational (dissipative) and reversible (coherent) dynamics have
the same origin (Hamiltonian)

= such conditions may be achieved in many-body systems as well (though not generic)



Refresher

Keldysh functional integral V'V +C9,J(tpur\/ \/ \/

real-time partition function:

§ AVAVAREE,y

— tr U (&, t)U (e, 1) p(t;) = trlU (b, &) p(6) Ut te) = trl (b, t:) p(t) U (e, 1)

/

time evolution operator L?(tf, t;) = e 1H (ti—ti)

Z =trp=trp(t;) =1

= density operator transforms as matrix under time evolution

= Keldysh functional integral: Trotterize on both sides / contours, insert coherent state
completeness relations



Refresher

Keldysh functional integral V \/ \/ +C?,J(tpur\/ \/ \/

real-time partition function:

Z =trp=trp(t;) =1

= tr U (t;, to)U(ts, 1) p(t;) = trUd (ts, t;) p(t:)U (1, tr)

§ AVAVAREE,y

= tr U (te, &) p(t)UT (b5, ;)
—— D

— /D¢+D¢_eis[¢+’¢_] + contour - contour
. . . * /
Trotterization, coherent state insertion ¢+ (t) ¢—|— (t )
correlation functions: field insertions ( ); < ? \.
> 4
Z = (1) (Teld 000 = 5 risth|

Zljy, -] = (e Ureortimontec))




Refresher

Translation table: Operator vs. Functional Formulation

Operator formalism: Markovian master equation
atp — L p = —1 [H, IO] -+ Z Ko (QLOHOLL — {L:&La, p}) Liouvillian operator

Functional formalism (equivalent): Markovian dissipative action

Iy
S = f dt (¢, (D)idp, (1) — ¢~ (0)i0,Pp_(1) — iL(P1(1), ¢, (1), p2(2), p_(1))).

Io

L=—i(H —H_)— Z Ka (2La’+LL,_ — LL,—i—LOH— — LL,—La,—> Liouvillian functional

(8
Hy = H(¢L,0.) etc.
... and partition function

Z = trp(t) = f D@, @] =1 @y = (91,0,)7

Translation table:

+ contour

e operator right of density matrix -> - contour

<
e operator left of density matrix -> + contour { }
- corﬁ)ur




