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Many-body physics 
with cold atoms

Quantum optics control

Bose-Einstein Condensate
(1995)

Mott Insulator
(2002)

Vortices
(1999)

many-body 
system Temperature T,

particle number N

Common theme:

• closed system (isolated from 
environment)

• stationary states in thermodynamic 
equilibrium

Fermion superfluid
(2003)

Motivation

➡ thermalization/equilibration (PennState, Berkeley, 
Chicago, ...)

➡ sweep and quench many-body dynamics (Munich, 
Vienna)

➡ metastable excited many-body states (Innsbruck, 
MIT, ...)

➡ ...



many-body 
system Temperature T,

particle number N

Common theme:

• closed system (isolated from 
environment)

• stationary states in thermodynamic 
equilibrium

Quantum optics control

Motivation

Novel Situation: Cold atoms as open many-body systems

• natural occurrences 
of dissipation  

➡ no immediate condensed 
matter counterpart

dissipative environment

many-body 
system

Many-body physics 
with cold atoms

Bose-Einstein Condensate
(1995)

Mott Insulator
(2002)

Vortices
(1999)

Fermion superfluid
(2003)

drive
(e.g. laser)

➡ drive/dissipation as dominant 
resource of many-body dynamics!

• use manipulation tools of 
quantum optics

➡ defines non-equilibrium situation in many-body stationary state



Plan of the Lecture

Quantum optics control

Part I: Dissipation Engineering and Many-Body Physics in Open Atomic Systems

• Open system character on various length scales:

microscopic
quantum optics

thermodynamic
many-body physics

long wavelength
statistical mechanics

• Open quantum systems

• Dissipation engineering in many-
body systems

• Non-equilibrium phase transitions from 
competing unitary and dissipative dynamics

@t⇢ = �i[H, ⇢] + L[⇢]

Part II: Many-Body Physics and Statistical Mechanics in Open Systems with Natural Dissipation

• Critical behavior and universality

• Keldysh functional integral for open systems

• Dynamical criticality in driven-open systems

• Experimental platforms and microscopic 
models 5

interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.
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Figure 1. Emergence of universality: Top panel: The flow of the
complex renormalized two-body coupling ũ2 = �̃+ i̃ (see Sec. VI A)
is attracted to the Wilson-Fisher fixed point ũ2⇤ = i5.308 irrespective
of the initial value ũ⇤. We show numerical solutions to the flow equa-
tions for rK⇤ = 10, ru3⇤ = 1, ̃3⇤ = 0.01, and values of ũ2⇤ lying on
a rectangle with sides �̃ 2 [0, 10], ̃ = 2, 10 and �̃ = 10, ̃ 2 [2, 10].
Fine-tuning of w⇤ close to criticality results in trajectories that ap-
proach the scaling solution before eventually being driven towards
the symmetric phase. Bottom panel: Flow of ̃ for various starting
values ̃⇤ = 0.1, 1, 2, . . . , 10. The other initial values are the same
as in the top panel, apart from ru2⇤ = 10. Dots on the lines indi-
cate the extent of the critical domain, which is set by the Ginzburg
scale (126).

Halperin (HH) [19]. Again, we find the dynamic exponents
to coincide with the one of an ab initio computation for one of
HH’s models (model A) – the non-equilibrium conditions do
not modify the dynamical critical behavior either. A stronger
physical consequence of this finding is discussed in the next
subsection.

The outer shell identified in [25] is new, however. The new
exponent ⌘r making up this shell physically describes univer-
sal decoherence as explained below. Crucially, it relates to the
dynamical model A in the same pattern as model A relates
to the classical O(2) model: It adds a new shell, but does not
“feed back” or modify the ones enclosed. This outer shell also
contains a certain fine-structure as discussed below.

Asymptotic thermalization of the distribution function –
Regarding the intermediate shell of the hierarchy, we not only
find z of model A unmodified by the non-equilibrium condi-
tions, but also the emergence of an “equilibrium symmetry”,
cf. Sec. IV. The symmetry is implied by the relation ⌘Z = ⌘�,
where ⌘Z and ⌘� are the anomalous dimension of the wave-
function renormalization and the noise strength, respectively,
cf. Sec. V. In turn, the presence of the symmetry implies a
fluctuation-dissipation theorem, or, more physically speaking,
a detailed balance condition.

In order to better understand this aspect, consider an equi-
librium problem with detailed balance. All subparts of the
system are thus in equilibrium with each other. This means
that we can choose an arbitrary bipartition of the system, av-
erage over or integrate out the degrees of freedom in one of
them, and determine the temperature in the remaining part:
No matter how the partition is chosen, we would find the same
temperature. In other words, temperature is partition invari-
ant in an equilibirum system. This statement is easily trans-
lated into a renormalization group language: The natural sys-
tem partitions are the momentum shells. Partition invariance
of the temperature thus becomes a scale invariance of tem-
perature under renormalization, which successively integrates
out high momentum shells. The “equilibrium symmetry” ex-
presses precisely this physical intuition.

In a non-equilibrium problem as ours, this property and the
associated symmetry are manifestly absent in general, i.e., at
arbitrary momentum scales. However, our results imply the
emergence of this symmetry in the universal critical domain
delimited by the Ginzburg scale. In order to quantify this
observation, we compute the scale dependence of an e↵ec-
tive temperature, entering the (non-equilibrium) fluctuation-
dissipation theorem, cf. Sec. IV. Indeed, we find non-
universal scale dependent behavior at high momentum scales,
while becoming universal and scale independent within the
Ginzburg domain, cf. Fig. 2. We may thus speak of an asymp-
totic low-frequency thermalization of the critical driven open
system.

Independence of the new critical exponent and maximality
of the extension – It is important to demonstrate the indepen-
dence of the new exponent: At a second order phase transition,
many critical exponents can be defined, each characterizing a
di↵erent observable. However, only few of them are indepen-
dent, i.e., cannot be expressed in terms of a smaller set by
means of scaling relations.

In our FRG approach, the independence of the four above
described exponents is reflected in the deep infrared behav-
ior of the flow equations. More precisely, it is expressed in a
block diagonal structure of the stability matrix encoding the
universal behavior in the vicinity of the Wilson-Fisher fixed
point, cf. Sec. VI: There are two blocks, and the lowest eigen-
value of each of them determines an independent critical ex-
ponent. In addition we have the independent anomalous di-
mension ⌘ and the dynamical exponent z. Moreover, a com-
plementary argument can be given from the opposite, ultravi-
olet limit of the problem.

To this end, recall that any independent critical exponent
must be related to a short-distance mass scale in the prob-

ei�[�] =

Z
D��eiSM [�+��]



Part I: 
Dissipation Engineering and Many-Body Physics in Open 

Atomic Systems



Outline

• Competing unitary and dissipative dynamics

• Dissipation engineering in 
many-body systems• Open quantum systems

• scale separations in quantum optics
• quantum master equations

• dark states
• driven dissipative BEC

• dynamical phase transition
• non-equilibrium phase diagram



Brief Reminder: 
Open Quantum Systems

bathsystem
drive



continuum bath of 
harmonic oscillatorsHB =

�
d� �b†�b�

quantum jump / Lindblad operators
polynomial in system operators

linear bath operator coupling to the system

system environment / 
bath

drive

Open Quantum Systems

HS ⇠ !0 typical scale



Open Quantum Systems

Three approximations:
(1) Born approximation: 

(2) Markov approximation:

(3) Rotating wave approximation:

system frequency

reservoir bandwidth

system environment / 
bath

drive

|g⟩

|e⟩

Γ

detuning

in this example:
system Hamiltonian

jump operator

driven system



Quantum Master Equation

bathsystem

➡ Eliminate bath degrees of freedom in second order time-dependent 
perturbation theory 

Liouvillian operator in Lindblad form

Trbath

   effective system dynamics from Master Equation (zero temperature bath)
Lindblad quantum 
jump operators

• Structure: second order perturbation theory
• mnemonic: norm conservation



Open Quantum Systems as Driven Systems

|g⟩

|e⟩

Γ

• Most (all?) of the non-equilibrium features to be discussed root
  in the driven nature of quantum optical systems 

• Consider two-level system:
• without drive, upper level inaccessible
• drive / pump means to put in large amount of energy. Does      

       not happen “spontaneously”
• large scale separation: bath may look as zero temperature  

       reservoir though it is not (cf. radiation field)

• Implications:
• no obedience of the second law of thermodynamics (state purification)
• independent unitary and dissipative dynamics (different physical origins)
• no guarantee for detailed balance, once unitary and dissipative dynamics compete
• NB: contrasts equilibrium: relaxational (dissipative) and reversible (coherent) dynamics have

       the same origin (Hamiltonian)

➡ such conditions may be achieved in many-body systems as well (though not generic)       

Part I

Part II



Driven Dissipative BEC



Formulation of the Goal

mixed state 
typically

pure state (“dark state”)

� ⇥ e�H/kBT T⇥0���⇤ |Eg⇧ ⌅Eg|

cooling to ground state by coupling to a zero temperature reservoir

• Devise purely dissipative evolution which drives into desired pure state

⇢(t)
t!1�! ⇢ss

!
= |DihD|

|Di = |BECi first example

• Contrast this to standard thermodynamic equilibrium scenario:



➡ is a “dark state” decoupled from dissipative evolution

�(t) t�⇥���⇥ |g+⌅ ⇤g+|

➡ Driven dissipative dynamics “purifies” the state
|g+�

Dark States in Quantum Optics

• Goal: pure BEC as steady state solution, independent of initial density matrix:

• Such situation is well-known quantum optics (three level system): optical pumping 
(Kastler,  Aspect, Cohen-Tannoudji; Kasevich, Chu; ...)

r(t)�! |BECihBEC| for t ! •

Hilbert space

dark subspace

• Interesting situation: unique dark state solution

➡ dissipation increases purity @t tr(⇢
2) < 0

➡ directed motion in Hilbert space ⇢
t!1�! |DihD|

➡ More generally: dark state is a dissipative zero mode (time evolution stops)

L = 
X

↵

J↵⇢J
†
↵ � 1

2{J
†
↵J↵, ⇢}J↵|Di = 0 8↵



• optical pumping: three internal (electronic) levels (Aspect, Cohen-Tannoudji; Kasevich, Chu)

dark state bright state

• 1 atom on 2 sites: external (spatial) degrees of freedom

1 2 (a†1 + a†2) |vac� (a†1 � a†2) |vac⇥
symmetric anti-symmetric

➡   drive and dissipation: many-particle optical pumping into
long-range ordered state via phase locking

• N atoms on M sites

|BECi = 1

N !

⇣X

`

a†`

⌘N
|vaci

Dark states: An analogy
SD et al. Nat. Phys. (2008)
F. Verstraete et al. Nat. Phys. (2009)



Driven Dissipative lattice BEC 
• Consider jump operator (1D):

(1) BEC state is a dark state: |BECi =
1

N!

⇣
Ầa†

`

⌘N
|vaci

@t⇢ = 
X

↵

J↵⇢J
†
↵ � 1

2{J
†
↵J↵, ⇢}

Ji = (a†i + a†i+1)(ai � ai+1)

Ji|BECi = 0 8i

(2) BEC state is the only dark state:

•                     has no eigenvalues (on N-1 particle Hilbert space)

•                      has unique zero eigenvalue

(a†i + a†i+1)

(ai � ai+1)

(ai � ai+1) 8i �! (1� eiq)aq 8q

• Interpretation: any antisymmetric component of a particle’s superpositon on i, i+1 mapped 
onto the symmetric one

[(ai � ai+1),
X

`

a†`] = 0



(3) Uniqueness: |BEC> is the only stationary state (sufficient condition)

r(t) t!•��! |DihD|

(4) Compatibility of unitary and dissipative dynamics

      be an eigenstate of H, |Di H |Di = E |Di

• Long range order in many-body system from quasi-local dissipative operations
• Uniqueness: Final state independent of initial density matrix
• Criteria are general: jump operators for AKLT states (spin model), d-wave and 

topological states (fermions)

Driven Dissipative lattice BEC 

If there exists no subspace of the full Hilbert space which is left invariant under 
the set         , then the only stationary states are the dark states{J↵}



Physical Realization: Reservoir Engineering

• much lower energy scales...

• driven two-level atom + spontaneous 
emission

|g⟩

|e⟩

Ω Γ optical 
photon

atom
laser photon

Quantum optics ideas/techniques

?
(many body) cold atom systems

• coherent drive: optical laser light

• reservoir: vacuum modes of the 
radiation field (T=0)
w⇠ 2p⇥1014Hz



• driven two-level atom + spontaneous 
emission

• coherent drive: optical laser light

• reservoir: vacuum modes of the 
radiation field (T=0)

• coherent drive: Raman laser

• reservoir: Bogoliubov excitations of the BEC 
(at temperature T)

BECBEC |0⟩

|1⟩
“phonon”

• trapped atom in a BEC reservoir

Physical Realization: Reservoir Engineering

w⇠ 2p⇥1014Hz wbd ⇠ 2p⇥ kHz

|g⟩

|e⟩

Ω Γ optical 
photon

atom
laser photon



+� �⌦

long times 

• Idea: immersion of coherently driven lattice system into BEC reservoir

Ji = (a†i + a†i+1)(ai � ai+1)

• geometric lattice setup: Λ-type level structure via optical superlattice

1 2

a1 a2

auxiliary system

system of interest

Physical Realization: Reservoir Engineering

target setting

jump operators



Physical Realization: Reservoir Engineering

long times 

   Rabi frequency
b

1 2

a1 a2

�laser = 2�lattice

auxiliary system

system of interest

(i) Drive: coherent coupling to auxiliary system with double wavelength Raman laser

driving laser

pairwise antisymmetric drive 

= ⌦b†(a1 � a2) + h.c.

⌦2 = ei⇡⌦1 = �⌦1for

+� �⌦

• Idea: immersion of coherently driven lattice system into BEC reservoir

Ji = (a†i + a†i+1)(ai � ai+1)

target setting

described jump operators

⌦1b
†a1 + ⌦2b

†a2 + h.c.



long times 

(ii) Dissipation: phonon emission into superfluid reservoir
reservoir 

driving laser
superfluid 
reservoir b

1 2

a1 a2

auxiliary system

system of interest

• microscopically: s-wave interaction of 
system and bath particles

• BEC in bath gives standard qo system-
bath setting

Physical Realization: Reservoir Engineering

+� �⌦

• Idea: immersion of coherently driven lattice system into BEC reservoir

Ji = (a†i + a†i+1)(ai � ai+1)

target setting

described jump operators



Cooling into BEC with another BEC?

laser

➡ effective zero temperature reservoir
➡ can reach system entropies well below bath (possible due to pumping, cf. fridge)

1 2

a1 a2

b

reservoir 

• band separation         largest energy 
scale in the problem

!bd

!bd • reservoir BEC = reservoir of Bogoliubov 
phonon excitations

• has temperature TBEC

TBEC ⌧ !bd

) n( !bd
TBEC

) ⌧ 1
bath occupation



Physical Realization

• Long range phase coherence from quasi-local dissipative 
operations

• - Coherent drive: locks phases
- Dissipation: randomizes
- Conspiracy: directed motion in Hilbert space, purification

Summary:

• The coherence of the driving laser is mapped on the matter system
• Setting is therefore robust (commensurability condition on driving 

and lattice laser)

Hilbert space

dark subspace



Competition of Unitary vs. Dissipative Dynamics

SD, A. Tomadin, A. Micheli, R. Fazio, P. Zoller, Phys. Rev. Lett. 105, 015702 (2010);
A. Tomadin, SD, P. Zoller, Phys. Rev. A 108, 013611 (2011).



Physical Picture: Nonequilibrium Phase Transition

d�

dt
= �i [H, �] + L�

• Nonequilibrium master equation evolution:

H = �J
�

<i,j>

a†iaj + U
�

i

a†2i a2
i

drives into BEC with rate 

Competition

•  Compare to superfluid / Mott insulator quantum phase transition

1.0

2.0

3.0

0.010 0.020 0.030
0.0
0.0

SF

MI

MI

MI

Mott lobes, 
quantized particle 

number

superfluid, 
fixed phase

n=1
M. Greiner, I. Bloch, T. Hänsch et al., 

Nature Jan 3 2002

Interference pattern

superfluid: 
Matter wave

Mott back to superfluid

➡ competition between kinetic and interaction energy



• Interaction U favors localization in real 
space for integer particle numbers: 

• Mott state with quantized particle no.
• no expectation value: phase symmetry intact 

(unbroken)

• Hopping J favors delocalization in real space: 
• Condensate (local in momentum space!)
• Fixed condensate phase: Breaking of phase 

rotation symmetry

➡ Competition gives rise to a quantum phase transition as a function of 

⇥bi⇤ � ei�

U/J

Reminder: Mott Insulator-Superfluid Phase Transition



Physical Picture: Nonequilibrium Phase Transition

d�

dt
= �i [H, �] + L�

• Nonequilibrium master equation evolution:

H = �J
�

<i,j>

a†iaj + U
�

i

a†2i a2
i

drives into BEC with rate 

Competition

➡ Question: What are the true analogies and differences to equilibrium 
(quantum) phase transitions?

•  Analogy to superfluid / Mott insulator quantum phase transition

➡ Expect phase transition as function of 

• enhancement of superfluidity:           kinetic energy J        driven dissipation 

• suppression of superfluidity:              interaction U             interaction U  

U/J



Mixed State Gutzwiller Approach

➡  Nonlinear Mean Field Master Equation for reduced density operator 

• Strategy: approximation scheme interpolating between limiting cases

• onsite (quantum) fluctuations treated exactly
• (connected) spatial correlations neglected
• allows to describe mixed states (unlike zero temperature Gutzwiller)

• Nonlinearity emerging in approximation to linear qm equation: similar GP equation

• Argumentation must be based on equation of motion

⇢(t) =
Y

i

⇢i(t)

 ⌧ U

• We will additionally account for a finite hopping 

 � U

J

• Implementation: Gutzwiller product ansatz for the density operator

dissipative condensate see below!



From Weak to Strong Coupling

• Strong interaction destroys the phase coherence:
transformation to  rotating frame

annihilation operator in rotating frame

• Master equation reduces to 

➡ suppression of off-diagonal order

• Thermal equation with thermal (mixed) state solution

➡ the system acts as its own reservoir

• Weak interactions: dissipative Gross-Pitaevskii equation (coherent states)

dephasing & average out

⇠  
at dark state
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Dependence of the Steady State on the Interaction
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U-dependent     
steady state

Nonequilibrium phase transition between pure and mixed state, 
driven by a competition between unitary and dissipative dynamics

• Development in time of the non-analyticity at the critical point
• Shares features of:

• Quantum phase transition: interaction driven

• Classical phase transition: ordered phase terminates in a thermal state

• No signature of commensurability effects (Mott) due to strong mixing of U

• no superfluid:

• purity at T=0:



Analytical Approach in the Limit of Low Density

• Study the equations of motion of the correlation functions

in principle: infinite and nonlocal hierarchy

➡ Infinite hierarchy exhibits a closed nonlinear subset for low order correlation functions

• Introduce a power counting: 
and keep only the leading order for 

b` ⇠
p
n, b†` ⇠

p
n

n ! 0

• Many-body problem: relevant information in the low order correlation functions

{h(b†`)
nbm` i}
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Critical Exponent of the Phase Transition

• Expect form of the order parameter evolution

• Critical exponents can be extracted from approaching the 
phase transition in time 

m2 < 0 m2 > 0

| (t)| ⇠ e�m2t

t↵
real part of lowest 
eigenvalue: “mass”

• At criticality: zero eigenvalue and thus dominant polynomial decay

scaling 

exponential 
runaway

initial 
transient

• Numerical Result (high density):

↵ ⇡ 1/2

• Analytical Result (n ! 0) :

| (t)| ⇠ t�1/2, ↵ = 1/2

at criticality, Landau-Ginzburg type 
cubic but dissipative nonlinearity

➡ Critical behavior could be studied experimentally from following the time evolution of 
condensate fraction

Mean field value as expected. 
But governs the time evolution.
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q

q = 0dark state at

q⇤

Order-order phase transition at weak coupling

• qualitative picture: weak damping in vicinity of dark state (linearized field equation)

• the scale Un competes with hopping and dissipation

q ! 0 :

• there always is a        where the competition is of order unity |q⇤|

➡ can expect qualitative effects

q ⇡ (2n+ 1)q2

Un



Linear Response around Homogeneous State
• Imaginary part of the Liouvillian as function of quasimomentum, 

Imaginary part of the spectrum of the linearized equation

many stable branches, fluctuation decay

one branch with unstable low momentum modes

with the hypothesis on the spatial dependence 
of the perturbation

100 sites, high densities, full mean 
field system

O()

O(n)

Infinite system, low densities, 7x7 
linear system of EoMs

J ⌧ 

➡ Existence of dissipatively unstable modes is a universal feature of the regime 
➡ low density limit: the unstable modes belong to single particle sector

J ⌧ 



Reduction to the Low-Lying Modes
• Adiabatic elimination of the fast-decaying modes (two times)

solve for the fast modes      and obtain slow modes equation only

• Low momentum equation of motion for of the condensate fluctuations only 

➡ renormalization of the off-diagonal terms 
➡ absent in the dissipative GPE

bare dissipative rate bare hopping at low momentum

✓
@t 1

0 ⌘ @t 2

◆
=

✓
M11 M12

M21 M22

◆✓
 1

 2

◆
collection of low 
density correlation 
functions



Origin of the Instability
• Complex spectrum of the low-lying single particle excitations:

• Interpretation: Below a critical value

J = 9Un/(2z)

the speed of sound becomes imaginary. 
This term always dominates at sufficiently small momenta. Its sign is opposite to 

renormalization correction

�q = q + ic|q|, c =
p

2Un(J�9Un/(2z))

q

➡ The dynamical instability is fluctuation induced, a weak coupling phenomenon, and an 
intrinsic many-body effect

• The fate of the system beyond linear response:

density profile signature: 
spontaneous breaking of 
translation symmetry

maximum instability 
momentum transmuted 
into CDW wavelength



numerical (linear instability)
analytical

The Steady State Phase Diagram

• Strong coupling second order phase transition to a thermal-like disordered state
• Homogeneous dissipative condensate is unstable against CDW order for 

infinitesimal interaction
• Condensed phase and homogeneous condensate can be stabilized by finite 

coherent hopping 

thermal

condensed, 
homogeneouscondensed, CDW



Summary and further aspects

By merging techniques from quantum optics and many-body systems: 
Driven dissipation can be used as controllable tool in cold atom systems.

• Pure states with long range correlations from quasilocal dissipation

• New many-body physics: Nonequilibrium phase transition driven via competition of unitary and 
dissipative dynamics

• Additional physical platforms for dissipation engineering: trapped ions, microcavity arrays
• Bosons: What is the nature / universality class of the dynamical phase transition?
• Fermions: dissipative pairing and targeting of topological states of matter



Part II: 
Many-Body Physics and Statistical Mechanics in open 

systems with natural dissipation
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interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.
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Figure 1. Emergence of universality: Top panel: The flow of the
complex renormalized two-body coupling ũ2 = �̃+ i̃ (see Sec. VI A)
is attracted to the Wilson-Fisher fixed point ũ2⇤ = i5.308 irrespective
of the initial value ũ⇤. We show numerical solutions to the flow equa-
tions for rK⇤ = 10, ru3⇤ = 1, ̃3⇤ = 0.01, and values of ũ2⇤ lying on
a rectangle with sides �̃ 2 [0, 10], ̃ = 2, 10 and �̃ = 10, ̃ 2 [2, 10].
Fine-tuning of w⇤ close to criticality results in trajectories that ap-
proach the scaling solution before eventually being driven towards
the symmetric phase. Bottom panel: Flow of ̃ for various starting
values ̃⇤ = 0.1, 1, 2, . . . , 10. The other initial values are the same
as in the top panel, apart from ru2⇤ = 10. Dots on the lines indi-
cate the extent of the critical domain, which is set by the Ginzburg
scale (126).

Halperin (HH) [19]. Again, we find the dynamic exponents
to coincide with the one of an ab initio computation for one of
HH’s models (model A) – the non-equilibrium conditions do
not modify the dynamical critical behavior either. A stronger
physical consequence of this finding is discussed in the next
subsection.

The outer shell identified in [25] is new, however. The new
exponent ⌘r making up this shell physically describes univer-
sal decoherence as explained below. Crucially, it relates to the
dynamical model A in the same pattern as model A relates
to the classical O(2) model: It adds a new shell, but does not
“feed back” or modify the ones enclosed. This outer shell also
contains a certain fine-structure as discussed below.

Asymptotic thermalization of the distribution function –
Regarding the intermediate shell of the hierarchy, we not only
find z of model A unmodified by the non-equilibrium condi-
tions, but also the emergence of an “equilibrium symmetry”,
cf. Sec. IV. The symmetry is implied by the relation ⌘Z = ⌘�,
where ⌘Z and ⌘� are the anomalous dimension of the wave-
function renormalization and the noise strength, respectively,
cf. Sec. V. In turn, the presence of the symmetry implies a
fluctuation-dissipation theorem, or, more physically speaking,
a detailed balance condition.

In order to better understand this aspect, consider an equi-
librium problem with detailed balance. All subparts of the
system are thus in equilibrium with each other. This means
that we can choose an arbitrary bipartition of the system, av-
erage over or integrate out the degrees of freedom in one of
them, and determine the temperature in the remaining part:
No matter how the partition is chosen, we would find the same
temperature. In other words, temperature is partition invari-
ant in an equilibirum system. This statement is easily trans-
lated into a renormalization group language: The natural sys-
tem partitions are the momentum shells. Partition invariance
of the temperature thus becomes a scale invariance of tem-
perature under renormalization, which successively integrates
out high momentum shells. The “equilibrium symmetry” ex-
presses precisely this physical intuition.

In a non-equilibrium problem as ours, this property and the
associated symmetry are manifestly absent in general, i.e., at
arbitrary momentum scales. However, our results imply the
emergence of this symmetry in the universal critical domain
delimited by the Ginzburg scale. In order to quantify this
observation, we compute the scale dependence of an e↵ec-
tive temperature, entering the (non-equilibrium) fluctuation-
dissipation theorem, cf. Sec. IV. Indeed, we find non-
universal scale dependent behavior at high momentum scales,
while becoming universal and scale independent within the
Ginzburg domain, cf. Fig. 2. We may thus speak of an asymp-
totic low-frequency thermalization of the critical driven open
system.

Independence of the new critical exponent and maximality
of the extension – It is important to demonstrate the indepen-
dence of the new exponent: At a second order phase transition,
many critical exponents can be defined, each characterizing a
di↵erent observable. However, only few of them are indepen-
dent, i.e., cannot be expressed in terms of a smaller set by
means of scaling relations.

In our FRG approach, the independence of the four above
described exponents is reflected in the deep infrared behav-
ior of the flow equations. More precisely, it is expressed in a
block diagonal structure of the stability matrix encoding the
universal behavior in the vicinity of the Wilson-Fisher fixed
point, cf. Sec. VI: There are two blocks, and the lowest eigen-
value of each of them determines an independent critical ex-
ponent. In addition we have the independent anomalous di-
mension ⌘ and the dynamical exponent z. Moreover, a com-
plementary argument can be given from the opposite, ultravi-
olet limit of the problem.

To this end, recall that any independent critical exponent
must be related to a short-distance mass scale in the prob-



• Critical behavior and universality

• Keldysh functional integral for open systems

• Dynamical criticality in driven-open systems

• Experimental platforms and 
microscopic models

Outline

• universality out of equilibrium?
• relation to equilibrium criticality?
• Thermalization, decoherence?
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interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

• Key Questions:

ei�[�] =

Z
D��eiSM [�+��]

• mapping quantum master equations to 
functional integrals

• responses and correlations

• microscopic derivation for stochastic 
exciton-polariton models

• symmetries and low momentum dynamics

• reminder: criticality in equilibrium
• universality



Motivation: Driven-dissipative many-body dynamics

• experimental many-body systems without particle number conservation

• polar molecules (Jun Ye Labs)

• open system Dicke models in cavity (Esslinger)/ circuit (Schoelkopf, 
Wallraff) QED, nanomechanical systems (Painter, Lehnert, Aspelmeyer)

• other platforms (light-matter): 

➡ polar molecules

➡ optical Feshbach resonances 

➡ trapped ions

➡ nanomechanics

• exciton-polariton systems in 
semiconductor quantum wells

Kasprzak et al., Nature 2006
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Lai and Haus, 1989a,b).
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microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
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for Bose-Einstein condensation phenomena in gases of
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tov, 2007; High et al., 2012), so far none of these re-
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situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.

single particle pump

• Driven-open Dicke models
a

b

Baumann et al., Nature 2010 

• experimental systems on the interface of quantum optics and many-body physics

• Coupled microcavity arrays: driven 
open Hubbard models

Koch et al., PRA 2010 



Keldysh Functional Integral for Open Systems
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Why working with Functional Integrals?
• Feynman’s formulation of quantum mechanics • Advantages of the functional formulation of 

quantum field theory

• general:

• unified language from quantum dots to 
quantum gravity

• powerful techniques: diagrammatic 
perturbation theory; collective variables; 
renormalization group

• non-equilibrium Keldysh

• closer to the real-time formulations of 
quantum mechanics

• yields directly observable quantities 
(responses and correlations)

• indispensable for non-Hamiltonian 
systems:

• disorder

• dissipation

• open the powerful toolbox of quantum 
field theory for many-body non-
equilibrium situations

infinite harmonic 
baths!



Basic Idea: Keldysh functional integral

• Schroedinger equation: evolving a state vector

• Compare:

i@t| i(t) = H| i(t) ) | i(t) = U(t, t0)| i(t0)

U(t, t0) = e�iH(t�t0)

@t⇢(t) = �i[H, ⇢(t)] ) ⇢(t) = U(t, t0)⇢(t0)U
†(t, t0)

• Heisenberg equation: evolving a state (density) matrix

⇢ = | ih |• identical for pure (factorizable) states

• First case: functional integral via “Trotterization” of time interval and insertion of coherent states:

eiH(t�t0) = lim
N!1

(1 + i�tH)N �t =
t� t0
N

�t t0t
| i(t0)

➡ single set of degrees of freedom for vector evolution
➡ analogous procedure for thermal equilibrium: formal analogy of evolution operator 

and “imaginary time evolution operator” ⇢eq = e��H
e�iHt



Basic Idea: Keldysh functional integral

• Schroedinger equation: evolving a state vector

• Compare:

i@t| i(t) = H| i(t) ) | i(t) = U(t, t0)| i(t0)

U(t, t0) = e�iH(t�t0)

@t⇢(t) = �i[H, ⇢(t)] ) ⇢(t) = U(t, t0)⇢(t0)U
†(t, t0)

• Heisenberg equation: evolving a state (density) matrix

⇢ = | ih |• identical for pure (factorizable) states

• Second case: “Trotterization” on both sides:

eiH(t�t0) = lim
N!1

(1 + i�tH)N �t =
t� t0
N

t

➡ two sets of degrees of freedom for matrix evolution

⇢(t0) tU U †



Basic Idea: Keldysh functional integral

• Schroedinger equation: evolving a state vector

• Compare:

i@t| i(t) = H| i(t) ) | i(t) = U(t, t0)| i(t0)

U(t, t0) = e�iH(t�t0)

@t⇢(t) = �i[H, ⇢(t)] ) ⇢(t) = U(t, t0)⇢(t0)U
†(t, t0)

• Heisenberg equation: evolving a state (density) matrix

⇢ = | ih |• identical for pure (factorizable) states

• Finally, we are interested in a “partition function”

tf = +1

Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�

iGC (X, X0) = tr
n

TC
⇣

ŷ(X)ŷ†(X0)
⌘

r̂(t�)
o

= tr
n

Û(t�, t+)Û(t+, t)ŷ(x)Û(t, t0)ŷ†(x0)Û(t0, t�)r̂(t�)
o

=
Z

D(y⇤, y)y(X)y(X0)eiS[y⇤ ,y]

I ±-basis

y ) (y+, y�)

S =
Z

C
dt

Z

x

L[y⇤, y] ) S =
Z t+

t�
dt

Z

x

(L[y⇤
+, y+]�L[y⇤

�, y�])

GC )
✓

G++ G+�
G�+ G��

◆

L. V. Keldysh, Sov. Phys. JETP 20,1018-26 (1965)

+ contour

- contour

Z = tr⇢(t) = tr⇢(t0) = 1

t0 = �1
➡ the trace contracts the evolution times 
➡ information on all stages: t0 ! �1, tf ! +1



Implementation: Keldysh integral for quantum master equations

• Goal: Functional integral representation of “partition function” for the quantum master equation

• i.e. representation in the basis of coherent states of 

Z = tr⇢(t)

• Step 1: formal solution of the master equation

• master equation not “separable” (action of        from both sides simultaneously)

• but linear in the density matrix: solution with “superoperator”
L↵

⇢(t) = e(t�t0)L ⇢0 = lim
N!1

(1 + �tL)N ⇢0

➡ unravelling/meaning in terms of concatenated infinitesimal time steps
➡ in each of them, apply rhs of the master equation

�t =
t� t0
N

def

@t⇢ = L ⇢ = �i [H, ⇢] +
X

↵

↵

�
2L↵⇢L

†
↵ � {L†

↵L↵, ⇢}
�



overlap and normalization

completeness

Formula Summary: Functional Integrals I

• Some familiarity with functional integrals is assumed but we refresh our knowledge:
• Given a grand canonical Hamiltonian , e.g. with general two-body interactions,

H − µN̂ =
∑

ij

(hij − µδij)a
†
iaj +

∑

ijkl

Vijkla
†
ia

†
jakal

• Quantum partition function

Z = tre−β(H−µN̂) =
∑

{n}∈Fock space

⟨n|e−β(H−µN̂)|n⟩, β = 1/kBT

• Here the partition function is represented in Fock space. We now perform a basis change to coherent
states leading to the functional integral

• Coherent states (bosons) – eigenstates to the annihilation operators ai:

ai|φ⟩ = φi|φ⟩, ⟨φ|a†i = ⟨φ|φ∗
i

|φ⟩ = e
∑

i
φia

†
i |vac⟩

⟨θ|φ⟩ = e
∑

i
θ∗
i φi , ⟨φ|φ⟩ = e

∑
i
φ∗
i φi

1Fock =
´

∏

i
dφ∗

i dφi

π e−
∑

i φ
∗
iφi |φ⟩⟨φ|

• Note: The creation operators do not have eigenstates

explicit form

• properties:

• Reminder:

Z(t) = Tr (⇢(t)) = Tr

 "
lim

N!1

NY

l=1

⇣
1 + �(l)t L

⌘#
⇢0

!
= 1

Implementation: Keldysh integral for quantum master equations

• partition function:

• now insert coherent states after each time step:

tf = +1

Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�

iGC (X, X0) = tr
n
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⇣

ŷ(X)ŷ†(X0)
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Û(t�, t+)Û(t+, t)ŷ(x)Û(t, t0)ŷ†(x0)Û(t0, t�)r̂(t�)
o

=
Z

D(y⇤, y)y(X)y(X0)eiS[y⇤ ,y]

I ±-basis
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S =
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C
dt
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dt
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x
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L. V. Keldysh, Sov. Phys. JETP 20,1018-26 (1965)

t0 = �1�t



Z(t) = Tr (⇢(t)) = Tr
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Implementation: Keldysh integral for quantum master equations

• partition function:
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On a technical note, it is important to normal order H, L†
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wherever these precise combinations appear. Then we can replace the creation
and annihilation operators by complex numbers, which correspond to the coherent
states that enclose them. For example, we have
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The last term in this Liouvillian functional, which belongs to the recycling term in
the master equation, mixes coherent state amplitudes from the (+) and (�) part of
the contour. It therefore has no counterpart in an equilibrium path integral formu-
lation, where only a single contour ((+) in this case) would need to be considered.
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factor 1

Heisenberg commutator

dissipation 
(anticommutator term)

fluctuation 
(quantum jump term)

• for normally ordered operators H,L†
↵L↵, L↵, L

†
↵
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each matrix element can be computed, e.g.

➡ time-independent operator valued Liouvillian ---> 
time(l)-dependent complex valued Liouvillian functional



Implementation: Keldysh integral for quantum master equations

• time(l)-dependent complex valued Liouvillian functional
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➡ gives rise to time evolution on the contour
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The last term in this Liouvillian functional, which belongs to the recycling term in
the master equation, mixes coherent state amplitudes from the (+) and (�) part of
the contour. It therefore has no counterpart in an equilibrium path integral formu-
lation, where only a single contour ((+) in this case) would need to be considered.

Together with the measure (5.1.7), the product of coherent states in Eq. (5.1.9)
becomes
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• factor 1: remember the completeness relation and overlaps 1 =

Z Y

i
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i d�i

⇡ e��⇤
i �i |�ih�|

• last step: take the continuum limit in time graining, 

�(l)t ! 0, N ! 1



Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�
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Markovian dissipative action on the contour

• Markovian dissipative action
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where we used the formula for the inner product of coherent states h�|�0i = e�⇤�0 ,
the continuum limit �t ! 0 and subsequently (formal) partial integration to arrive
at (5.1.12). Combining Eqs. (5.1.11) and (5.1.12) and performing the continuum
limit in both, we can formulate the time evolution between the points t = t0 and
t = t f in terms of the Markovian dissipative action

S =
Z t f

t0
dt
�
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(5.1.13)
Note that this expression gives a straightforward “translation table” between a
given master equation and the corresponding microscopic action, with the above
mentioned subtleties on normal ordering.

In Eq. (5.1.13), two terms are still missing in the action S , namely the contri-
butions from the trace and the density matrix from (5.1.9). Both are infinitesimal
contributions from the edges of the temporal Keldysh strings and act only as a
regularization to the action (5.1.13). They can be neglected when we are only in-
terested in a stationary state of a dissipative problem and send t0 ! �1, t f ! 1.
For more details see [104].

The above discussion allows us to write the partition function as

Z = tr⇢(t) =
Z

D [�+,��] eiS [�+,��] = 1. (5.1.14)

Here, �± = (�±, �⇤±)T and the functional measure D [�+,��] (product of all indi-
vidual measures on the (+) and (�) contour) is defined in (5.1.13).

We emphasize that the markovian dissipative action (5.1.13) manifestly repre-
sents non-equilibrium physics. This can be tested based on a symmetry principle
that any quantum system in thermal equilibrium obeys [104]. The symmetry is
a functional representation of the Kubo-Martin-Schwinger condition of thermal
states in the operator formalism [105, 106, 107], which uses the formal similarity
of a thermal density matrix e��H with unitary evolution eiHt. This symmetry allows
to straighforwardly identify non-equilibrium conditions, diagnosing it directly on
the level of the microscopic action for the problem. It does not require the cal-
culation of a fluctuation-dissipation relation, which can be done in the frame of
approximations only. In particular, the symmetry is absent in a generic problem
with competing Hamiltonian and Markovian dissipative dynamics. This absence
can be traced back to the driving conditions which are inherent to a quantum mas-
ter equation, as argued in Sec. 2.1.1

Eq. (5.1.14) just expresses the conservation of probability, which is normal-
ized to one. In order to extract physical information in terms of correlation func-
tions, we may introduce source terms J� =

�

j�, j⇤�
�

on each of the contours, a

➡ recognize Lindblad structure
➡ simple translation table (for normal ordered Liouvillian)

• operator right of density matrix -> - contour

• operator left of density matrix -> + contour
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the continuum limit �t ! 0 and subsequently (formal) partial integration to arrive
at (5.1.12). Combining Eqs. (5.1.11) and (5.1.12) and performing the continuum
limit in both, we can formulate the time evolution between the points t = t0 and
t = t f in terms of the Markovian dissipative action

S =
Z t f

t0
dt
�

�⇤+(t)i@t�+(t) � �⇤�(t)i@t��(t) � iL(�⇤+(t), �+(t), �
⇤
�(t), ��(t))

�

.

(5.1.13)
Note that this expression gives a straightforward “translation table” between a
given master equation and the corresponding microscopic action, with the above
mentioned subtleties on normal ordering.

In Eq. (5.1.13), two terms are still missing in the action S , namely the contri-
butions from the trace and the density matrix from (5.1.9). Both are infinitesimal
contributions from the edges of the temporal Keldysh strings and act only as a
regularization to the action (5.1.13). They can be neglected when we are only in-
terested in a stationary state of a dissipative problem and send t0 ! �1, t f ! 1.
For more details see [104].

The above discussion allows us to write the partition function as

Z = tr⇢(t) =
Z

D [�+,��] eiS [�+,��] = 1. (5.1.14)

Here, �± = (�±, �⇤±)T and the functional measure D [�+,��] (product of all indi-
vidual measures on the (+) and (�) contour) is defined in (5.1.9).

We emphasize that the markovian dissipative action (5.1.13) manifestly repre-
sents non-equilibrium physics. This can be tested based on a symmetry principle
that any quantum system in thermal equilibrium obeys [104]. The symmetry is
a functional representation of the Kubo-Martin-Schwinger condition of thermal
states in the operator formalism [105, 106, 107], which uses the formal similarity
of a thermal density matrix e��H with unitary evolution eiHt. This symmetry allows
to straighforwardly identify non-equilibrium conditions, diagnosing it directly on
the level of the microscopic action for the problem. It does not require the cal-
culation of a fluctuation-dissipation relation, which can be done in the frame of
approximations only. In particular, the symmetry is absent in a generic problem
with competing Hamiltonian and Markovian dissipative dynamics. This absence
can be traced back to the driving conditions which are inherent to a quantum mas-
ter equation, as argued in Sec. 2.1.1

Eq. (5.1.14) just expresses the conservation of probability, which is normal-
ized to one. In order to extract physical information in terms of correlation func-
tions, we may introduce source terms J� =

�

j�, j⇤�
�

on each of the contours, a

product of individual measures 
in each time step

➡ the partition function expresses conservation of probability
➡ no direct physical information (unlike equilibrium:                 free energy)
➡ physical information is in the correlation functions

logZ ⇠

• Functional integral representation of partition function
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Physical observables

Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�
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• correlation functions: field insertions on the contour
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• compute them: introduce sources (cf. Stat Mech)

Z = Tr(1 · ⇢) = h1i

Z[0, 0] = h1i = 1

• example

normalization

NB: Functional integrals always 
compute time-ordered correlation 
functions



Correlation vs. response functions

• two basic types of experiments:

study the photon output 
(e.g.               ) 

• correlation measurements: 
study without disturbing

• response measurements: probe 
system with (weak ) external fields
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FIG. 4. (Color online) Thermalization into quantum-critical
regime of the atomic (red dashed line) and photonic (blue lines)
distribution functions F (ω) when approaching the glass transition at
a critical disorder variance Kc for ω0 = 1.3,ωz = 0.5,κ = 0.01,Kc =
0.01, J = 0.1, and varying parameter δ = Kc − K . For larger values
of J , i.e., larger distance from the glass transition, the LET 2Teff =
limω→0 ωF (ω) of the photons is much lower than the LET of the
atoms and the frequency interval for which atoms and photons are
not equilibrated is larger. When the glass transition is approached,
atoms and photons attain the same LET.

cf. Fig. 4. At the glass transition, and within the entire
glass phase, the thermalization of the subsystems is complete,
with common effective temperature given in Eq. (2.4). This
effect can be understood qualitatively as a consequence of
the disorder-induced long-ranged interactions; cf. Eq. (4.32).
These lead to a coupling of atomic and photonic frequency
modes away from ω = 0 and enable equilibration.

We emphasize that the notion of thermalization here refers
to the expression of a 1/ω divergence for the system’s distribu-
tion function, as well as the adjustment of the coefficients for
atoms and photons. This provides an understanding for distinct
scaling properties of correlations (where the distribution
function enters) vs responses (which do not depend on the
statistical distribution), which can be addressed separately in
different experiments (see below). Crucially, this notion of
“thermalization” does not mean that the characteristic features
of the glass state are washed out or overwritten.

D. Emergent photon glass phase

The strong light-matter coupling results in a complete
imprint of the glass features of the atomic degrees of freedom
onto the photons in the cavity. We refer to the resulting state
of light as a photon glass highlighting the connection of
multimode cavity QED to random lasing media [49,50].

The photon glass is characterized by a photonic Edwards-
Anderson order parameter signaling infinitely long memory in
certain temporal two-point correlation function. This implies
that a macroscopic number of photons is permanently present
in the cavity (extensive scaling with the system size), which
are, however, not occupying a single mode coherently, but
rather a continuum of modes. The presence of a continuum of
modes at low frequency is underpinned by the slow algebraic
decay of the system’s correlation functions, as shown for the
photon correlation function in Fig. 5. This is a consequence
of the disorder-induced degeneracies. g(2)(τ ) is accessible by
detecting the photons that escape the cavity.

FIG. 5. (Color online) Emergent photon glass phase with alge-
braically decaying photon correlation function g(2)(τ ) at long times,
for parameters ω0 = 1,κ = 0.4,ωz = 6,J = 0.4,K = 0.16. The time
scale for which algebraic decay sets in is determined by the inverse
crossover frequency ωc, given by Eq. (5.11). For comparison, we
have also plotted the envelope of the exponential decay of the cor-
relation function in the normal and superradiant phase. The short-time
behavior of the correlation function is nonuniversal and not shown
in the figure; however, g(2)(0) = 3 due to the effective thermal
distribution for low frequencies. The parameter τ0 = O( 1

ω0
) was

determined numerically.

E. Cavity glass microscope

The cavity setup of Fig. 6 should allow for unprecedented
access to the strongly coupled light-matter phase with disorder.
Adapting the input-output formalism of quantum optics [51,
52] to the Keldysh path integral, we provide a comprehensive
experimental characterization of the various phases in terms of

FIG. 6. (Color online) Cavity glass microscope setup. Atoms are
placed in a multimode cavity subject to a transversal laser drive with
pump frequency ωp . The atoms are fixed at random positions by
an external speckle trapping potential over regions inside the cavity,
wherein mode functions g(ki ,xl) randomly change sign as a function
of the atomic positions, in order to provide frustration, as well as vary
in magnitude. The more cavity modes, the better, and in particular
the regime where the ratio of the number of cavity modes (M) over
the number of atoms (N ), α = M/N is kept sizable is a promising
regime for glassy behavior [9,15]. Photons leaking from the cavity
with rate κ give rise to additional dissipative dynamics and allow for
output detection measurements.
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0.01, J = 0.1, and varying parameter δ = Kc − K . For larger values
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limω→0 ωF (ω) of the photons is much lower than the LET of the
atoms and the frequency interval for which atoms and photons are
not equilibrated is larger. When the glass transition is approached,
atoms and photons attain the same LET.

cf. Fig. 4. At the glass transition, and within the entire
glass phase, the thermalization of the subsystems is complete,
with common effective temperature given in Eq. (2.4). This
effect can be understood qualitatively as a consequence of
the disorder-induced long-ranged interactions; cf. Eq. (4.32).
These lead to a coupling of atomic and photonic frequency
modes away from ω = 0 and enable equilibration.

We emphasize that the notion of thermalization here refers
to the expression of a 1/ω divergence for the system’s distribu-
tion function, as well as the adjustment of the coefficients for
atoms and photons. This provides an understanding for distinct
scaling properties of correlations (where the distribution
function enters) vs responses (which do not depend on the
statistical distribution), which can be addressed separately in
different experiments (see below). Crucially, this notion of
“thermalization” does not mean that the characteristic features
of the glass state are washed out or overwritten.
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The strong light-matter coupling results in a complete
imprint of the glass features of the atomic degrees of freedom
onto the photons in the cavity. We refer to the resulting state
of light as a photon glass highlighting the connection of
multimode cavity QED to random lasing media [49,50].

The photon glass is characterized by a photonic Edwards-
Anderson order parameter signaling infinitely long memory in
certain temporal two-point correlation function. This implies
that a macroscopic number of photons is permanently present
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are, however, not occupying a single mode coherently, but
rather a continuum of modes. The presence of a continuum of
modes at low frequency is underpinned by the slow algebraic
decay of the system’s correlation functions, as shown for the
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pump frequency ωp . The atoms are fixed at random positions by
an external speckle trapping potential over regions inside the cavity,
wherein mode functions g(ki ,xl) randomly change sign as a function
of the atomic positions, in order to provide frustration, as well as vary
in magnitude. The more cavity modes, the better, and in particular
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the number of atoms (N ), α = M/N is kept sizable is a promising
regime for glassy behavior [9,15]. Photons leaking from the cavity
with rate κ give rise to additional dissipative dynamics and allow for
output detection measurements.
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classical electromagnetic waves 
(e.g. transmission/absorption experiments)g(2)(⌧)

• directly delivered in the functional framework via basis transformation: “Keldysh rotation”
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◆
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◆
“classical field”: center-of-mass coordinate
“quantum field”: relative coordinate

• classical field can acquire finite expectation value (e.g. Bose condensation)

• quantum / noise field cannot



Correlation vs. response functions

• the action written in this basis:

(exact for free theory only)

5.2. OPEN DICKE MODEL FOR ULTRACOLD ATOMS IN A CAVITY317

basis”),

S =
Z

X

⇣

�⇤c, �
⇤
q

⌘

 

0 PA

PR PK

!  

�c

�q

!

+ interactions. (5.1.17)

The zero in this matrix reflects the elimination of redundancy in the ± basis (where
all entries are nonzero), and is an exact property of a Keldysh theory related to
the conservation of norm [103]. For example, for a problem with coherent non-
relativistic single-particle propagation, as well as single particle loss and pumping,
the inverse retarded and advanced propagators are given by PR = PA† = i@t + � +

µ + i where  =
⇣

�l � �p

⌘

/2, while for the Keldysh component of the inverse
propagator, the sum of single-particle pumping and loss rates � = �l + �p appears,
and we have PK = i�. The latter thus specifies the noise level.

Inversion of the 2 ⇥ 2 matrix in Eq. (5.1.17) yields the single-particle Green’s
function or propagator with retarded, advanced, and Keldysh components,

G =
 

GK GR

GA 0

!

. (5.1.18)

The physical single-particle response properties are encoded in the retarded re-
sponse function, and the correlations in the Keldysh component. The fluctuation-
dissipation theorem for the single-particle Green’s function in equilibrium then
reads for bosons GK(!,q) = coth(!/2T )(GR(!,q) �GA(!,q)), without immedi-
ate generalization to non-equilibrium situations.

5.2 Open Dicke Model for Ultracold Atoms in a
Cavity

A prime example for the interplay of coherent and dissipative dynamics is pro-
vided by recent open system realizations of the Dicke model in cavity QED exper-
iments at ETH [13, 14, 108]. These systems are still simple enough from a theoret-
ical perspective to develop some basic characteristic features of driven-dissipative
many-body systems, which may reappear in other open system physical contexts
and provide a valuable resource of orientation for more complex settings.

In this spirit, in [5.2A], we investigate in the Keldysh functional integral frame-
work the nonequilibrium phase transitions for driven ensembles with N atomic
(two-level) degrees of freedom interacting with a cavity mode, and coupled to a
Markovian dissipative bath. In the thermodynamic limit and at low frequencies,
we show that the distribution function of the photonic mode is thermal, with an
e↵ective temperature set by the atom-photon interaction strength. This behavior

➡ redundancy of the +/- basis eliminated (zero entry)
➡ the matrix is the inverse single particle Green’s function:
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◆✓
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◆
!
= 0

• equation of motion (action principle):

• Green’s function
G�1

G�1 �G = 1�(! � !0)�(q� q)

!,q

(Green’s function diagonal in 
frequency/momentum space)

➡ single particle Green’s function/propagator:

G =

✓
GK GR

GA 0

◆
GK = �GRPKGA



Correlation vs. response: Interpretation by example
• master equation for decaying cavity:

@t⇢ = �i[!0â
†â, ⇢] + (2â⇢â† � {â†â, ⇢})

• action:
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• decay of single-particle response:
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• observables from the Green’s functions:

• Lorentzian spectral density A(!) = ImGR(!) =
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• cavity mode occupation 
in stationary state :
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➡ correlation / statistical properties:   
➡ response / spectral properties: 
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Exciton-Polariton Condensates

5

interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
years, an intense activity has been devoted to the quest
for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
of the interesting advances in the direction of exciton
Bose-Einstein condensation in bulk cuprous oxide and
cuprous chloride, bilayer electron systems (Eisenstein
and MacDonald, 2004), and coupled quantum wells (Bu-
tov, 2007; High et al., 2012), so far none of these re-
search axes has led to extensive studies of the quantum
fluid properties of the alleged exciton condensate. The
situation appears to be similar for what concerns con-
densates of magnons, i.e. magnetic excitations in solid-
state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.

The situation is very di�erent for exciton-polaritons
in semiconductor microcavities, that is bosonic quasi-
particles resulting from the hybridization of the exci-
ton with a planar cavity photon mode (Weisbuch et al.,
1992). Following the pioneering proposal by Imamoğlu
et al., 1996, researchers have successfully explored the
physics of Bose-Einstein condensation in these gases of
exciton-polaritons. Thanks to the much smaller mass of
polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
much higher temperatures and/or lower densities.

Historically, the first configuration where spontaneous
coherence was observed in a polariton system was based
on a coherent pumping of the cavity at a finite angle,
close to the inflection point of the lower polariton dis-
persion. As experimentally demonstrated in (Baumberg
et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
Sketch of a planar semiconductor microcavity delimited by
two Bragg mirrors and embedding a quantum well (QW). The
wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
k� = �

c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.
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interesting perspective on many-body physics of photons
was developed in the pioneering literature on quantum
solitons in nonlinear optical fiber using a quantum non-
linear Schrödinger equation as well as Bethe ansatz tech-
niques (Drummond et al., 1993; Kärtner and Haus, 1993;
Lai and Haus, 1989a,b).

The research on exciton-polaritons in semiconductor
microcavities approached the physics of luminous quan-
tum fluids following a rather di�erent pathway. For many
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for Bose-Einstein condensation phenomena in gases of
excitons in solid-state materials (Gri⌅n et al., 1996): ex-
citons are neutral electron-hole pairs bound by Coulomb
interaction, which behave as (composite) bosons. In spite
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and MacDonald, 2004), and coupled quantum wells (Bu-
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state materials: Bose-Einstein condensation has been ob-
served (Demokritov et al., 2006; Giamarchi et al., 2008),
but no quantum hydrodynamic study has been reported
yet.
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et al., 1996, researchers have successfully explored the
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polaritons, several orders of magnitude smaller than the
exciton mass, this system can display Bose degeneracy at
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et al., 2000; Stevenson et al., 2000), above a threshold
value of the pump intensity a sort of parametric oscilla-
tion(Ciuti et al., 2000, 2001; Whittaker, 2001) occurs in
the planar microcavity and the parametric luminescence
on the signal and idler modes acquires a long-range co-
herence in both time and space (Baas et al., 2006). As
theoretically discussed in (Carusotto and Ciuti, 2005),
the onset of parametric oscillation in these spatially ex-
tended planar cavity devices can be interpreted as an
example of non-equilibrium Bose-Einstein condensation:
the coherence of the signal and idler is not directly in-
herited from the pump, but appears via the spontaneous
breaking of a U(1) phase symmetry.

The quest for Bose-Einstein condensation in a thermal-
ized polariton gas under incoherent pumping required a

FIG. 1 Figure from Kasprzak et al., 2006. Upper panel:
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wavevector in the z direction perpendicular to the cavity plane
is quantized, while the in-plane motion is free. The cavity
photon mode is strongly coupled to the excitonic transitions in
the QWs. A laser beam with incidence angle � and frequency
⇥ can excite a microcavity mode with in-plane wavevector
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c sin �, while the near-field (far-field) secondary emis-
sion from the cavity provides information on the real-space
(k-space) density of excitations. Central panel: The energy
dispersion of the polariton modes versus in-plane wavevector
(angle). The exciton dispersion is negligible, due to the heavy
mass of the exciton compared to that of the cavity photon.
In the experiments, the system is incoherently excited by a
laser beam tuned at a very high energy. Relaxation of the
excess energy (via phonon emission, exciton-exciton scatter-
ing, etc.) leads to a population of the cavity polariton states
and, possibly, Bose-Einstein condensation into the lowest po-
lariton state. Lower panel: Experimental observation of po-
lariton Bose-Einstein condensation obtained by increasing the
intensity of the incoherent o�-resonant optical pump.
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physics soon exits the regime of weakly interacting bosons that
describes ultracold atoms; second, the lifetime is short enough that
we must confront the role of non-equilibrium physics25. Never-
theless, the principal experimental characteristics expected for BEC
are clearly reported here: condensation into the ground state arising
out of a population at thermal equilibrium; the development of
quantum coherence, indicated by long-range spatial coherence, and
sharpening of the temporal coherence of the emission.

Experimental procedure
The sample we studied consists of a CdTe/CdMgTe microcavity
grown by molecular beam epitaxy. It contains 16 quantum wells,

displaying a vacuum field Rabi splitting of 26meV (ref. 26). The
microcavity was excited by a continuous-wave Ti:sapphire laser,
combined with an acousto-optic modulator (1-ms pulse, 1% duty
cycle) to reduce sample heating. The pulse duration is sufficiently
long (by four orders of magnitude) in comparison with the charac-
teristic times of the system to guarantee a steady-state regime. The
laser beam was carefully shaped into a ‘top hat’ intensity profile
providing a uniform excitation spot of about 35 mm in diameter on
the sample surface, as shown in Fig. 4i. The excitation energy was
1.768 eV, well above the polariton ground state (1.671 eV at cavity
exciton resonance), at the first reflectivity minimum of the Bragg
mirrors, allowing proper coupling to the intra-cavity field. This
ensures that polaritons initially injected in the system are incoherent,
which is a necessary condition for demonstrating BEC. In atomic
BEC or superfluid helium, the temperature is the parameter driving
the phase transition. Here the excitation power, and thus the injected
polariton density, is an easily tunable parameter, and so we chose it as
the experimental control parameter. The large exciton binding
energy in CdTe quantum wells (25meV), combined with the large
number of quantum wells in the microcavity, is crucial in maintain-
ing the strong coupling regime of polaritons at high carrier density.
The far-field polariton emission pattern was measured to probe the
population distribution along the lower polariton branch. The
spatially resolved emission and its coherence properties are accessible
in a real-space imaging set-up combined with an actively stabilized

Figure 1 |Microcavity diagram and energy dispersion. a, A microcavity is a
planar Fabry–Perot resonator with two Bragg mirrors at resonance with
excitons in quantum wells (QW). The exciton is an optically active dipole
that results from the Coulomb interaction between an electron in the
conduction band and a hole in the valence band. In microcavities operating
in the strong coupling regime of the light–matter interaction, 2D excitons
and 2D optical modes give rise to new eigenmodes, called microcavity
polaritons. b, Energy levels as a function of the in-plane wavevector kk in a
CdTe-based microcavity. Interaction between exciton and photon modes,
with parabolic dispersions (dashed curves), gives rise to lower and upper
polariton branches (solid curves) with dispersions featuring an anticrossing
typical of the strong coupling regime. The excitation laser is at high energy
and excites free carrier states of the quantum well. Relaxation towards the
exciton level and the bottom of the lower polariton branch occurs by
acoustic and optical phonon interaction and polariton scattering. The
radiative recombination of polaritons results in the emission of photons that
can be used to probe their properties. Photons emitted at angle v correspond
to polaritons of energy E and in-plane wavevector kk ¼ ðE="cÞsinv:

Figure 2 | Far-field emission measured at 5K for three excitation
intensities. Left panels, 0.55P thr; centre panels, P thr; and right panels,
1.14P thr; where P thr ¼ 1.67 kWcm22 is the threshold power of
condensation. a, Pseudo-3D images of the far-field emission within the
angular cone of^238, with the emission intensity displayed on the vertical axis
(in arbitrary units).With increasing excitation power, a sharp and intensepeak
is formed in the centre of the emission distribution ðvx ¼ vy ¼ 08Þ;
corresponding to the lowest momentum state kk ¼ 0. b, Same data as in a
but resolved in energy. For such a measurement, a slice of the far-field
emission corresponding to vx ¼ 08 is dispersed by a spectrometer and
imaged on a charge-coupled device (CCD) camera. The horizontal axes
display the emission angle (top axis) and the in-plane momentum (bottom
axis); the vertical axis displays the emission energy in a false-colour scale
(different for each panel; the units for the colour scale are number of counts
on the CCD camera, normalized to the integration time and optical density
filters, divided by 1,000 so that 1 corresponds to the level of dark counts:
1,000). Below threshold (left panel), the emission is broadly distributed in
momentum and energy. Above threshold, the emission comes almost
exclusively from the kk ¼ 0 lowest energy state (right panel). A small blue
shift of about 0.5meV, or 2%of the Rabi splitting, is observed for the ground
state, which indicates that the microcavity is still in the strong coupling
regime.
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Microscopic Origin 

• Starting point: coupled, open system of excitons and photons
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• Starting point: coupled, open system of excitons and photons

• Hamiltonian contribution:

Hph =

2 M. H. Szymańska, J. Keeling, P. B. Littlewood
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(h̄!)+1], where � is infinitesimal. The above is for
bosonic fields; the results for fermionic fields are similar, but commutators and anti-commutators
are interchanged in the definitions of Keldysh and retarded Green’s functions.

Polariton System Hamiltonian, and Coupling to Baths

To describe the polariton system we use a model of disorder localised excitons strongly coupled
to cavity photons[15–17]. Exciton-exciton interactions are included in this model by allowing
only zero or one excitons on a given site, thus describing hard-core bosons. This model has
several advantages for our aims: Firstly, this same Hamiltonian has been used to model lasers
[18], allowing us to relate polariton condensation to lasing. Secondly, it is known[16] that, in
equilibrium, except at extremely low densities, mean-field theory captures the phase diagram of
this model rather well. Finally, it allows one to account straightforwardly for exciton nonlinearity
within the non-equilibrium mean-field theory.
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sys
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bath

=
P

p,p
z

⇣p,p
z

( ̂†
p⌅̂p,p

z

+ H.c.) +

P

p,p
z

h̄!⇣

p,p
z

⌅̂†
p,p

z

⌅̂p,p
z

, with ⌅̂†
p,p

z

describing bulk photon modes. Each confined photon mode
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, corresponding to
conservation of in-plane momentum in the coupling between cavity and bulk photon modes.

Path-Integral Formulation

Following Ref. [14], we construct the non-equilibrium generating functional Z as a coher-
ent state path integral over fields1 defined on the closed-time-path contour, C. For concise-
ness, we arrange the fermionic fields into a Nambu vector ⇤ = (d, c)T. Formally, the par-
tition function is thus: Z =
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1In keeping with the convention of Ref. [14], we also refer to field amplitudes defined at discrete momenta,
such as  p, as fields. We note that Z is necessarily a functional integral, as we must account for a continuum of
paths taken by  , ⇤, C, D, ⌅ (and their complex conjugates) as functions of the continuous time variable t.

2When evaluating things we tend to take the continuum limit over p, making the partial time-derivative more
convenient and appropriate [14].
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• Starting point: coupled, open system of excitons and photons
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, Ĉ†
j,n

describe the pumping bath modes, and �
j,n

is the coupling

strength. Similarly, the contribution of the decay bath is Ĥdecay
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2. METHODOLOGY: MODELLING THE NON-EQUILIBRIUM SYSTEM 3

Treatment of Environment

For the bath Hamiltonian given above, the action S contains only terms linear or quadratic
in the bath fields C
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where F
C,D
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(E) with n
C,D

(E) the pumping bath occupation functions. As the
occupation functions of all baths appear in this action, they compete to set the occupation
function of the polaritons. This non-equilibrium action thus combines strong exciton-photon
coupling with the e↵ects of dissipation due to the open nature of the system. The action is

• fermion (exciton) inv. Green’s function and cubic non-linearity

➡ problem quadratic in fermion variables: Integrate out exactly

✓excitons are pumped 

✓ “fermion distribution 
functions”             describe 
exciton inversion (cf. laser) 

FD, FC

N0 = �(FD � FC)/2

excitons
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• effective polariton action after fermion (Gaussian) integration:

follows M. H. Szymanska, J. Keeling, P. B. Littlewood,  arXiv:1206.1784
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quadratic also in the fermionic fields ⇤
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, so we can also integrate over these fields to get the
e↵ective action for the photon field alone:
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As yet, we have made no assumption about what form  p(t) takes, however, since Tr{lnG�1
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involves  p(t), this e↵ective action is nonlinear, so to proceed further analytically, some expan-
sion or approximation scheme is required. Section 3 therefore discusses the mean-field theory of
this model, and how it relates to laser theory as well as equilibrium results.

3 Mean-Field Condition for a Coherent State

The mean-field theory of the non-equilibrium system describes a self-consistent steady state,
which may be found by evaluating the saddle point of S with respect to photon field, �S/� ⇤
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As noted above, the pumping bath occupations are imposed by choice, and we choose these
to model a thermalised reservoir of high energy excitons, with a population set by the strength
of pumping. In order to obey on average the constraint that we consider two-level systems,
we take n

C

(⌫) + n
D

(⌫) = 1. Introducing parameters µ
B
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to describe the occupation and
temperature of this exciton reservoir, we thus define:
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(µ
S

appears here via a gauge transform required to remove explicit time dependence from the
e↵ective action). If there were no exciton-photon coupling the excitonic two-level systems would

be thermally occupied, i.e. hd†
j

d
j

� c†
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c
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i = � tanh[�
B

(✏
j

� µ
B

/2 + µ
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/2)/2].

As anticipated above, Eq. (8) is rather general, encompassing limits that correspond both to
the equilibrium gap-equation for our model polariton system (discussed in Section 3), as well as
being capable of recovering the standard laser limit (discussed in Section 3). In addition, if one
extends this approach to slowly varying condensates, then as discussed in Section 3, one may
make contact with the complex Gross–Pitaevskii approach.
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As anticipated above, Eq. (8) is rather general, encompassing limits that correspond both to
the equilibrium gap-equation for our model polariton system (discussed in Section 3), as well as
being capable of recovering the standard laser limit (discussed in Section 3). In addition, if one
extends this approach to slowly varying condensates, then as discussed in Section 3, one may
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➡ due to cubic non-linearity: fermion fluctuation term 
is a function of the photon field

➡ Landau-Ginzburg theory: expand to quartic order 
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As noted above, the pumping bath occupations are imposed by choice, and we choose these
to model a thermalised reservoir of high energy excitons, with a population set by the strength
of pumping. In order to obey on average the constraint that we consider two-level systems,
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As anticipated above, Eq. (8) is rather general, encompassing limits that correspond both to
the equilibrium gap-equation for our model polariton system (discussed in Section 3), as well as
being capable of recovering the standard laser limit (discussed in Section 3). In addition, if one
extends this approach to slowly varying condensates, then as discussed in Section 3, one may
make contact with the complex Gross–Pitaevskii approach.
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the equilibrium gap-equation for our model polariton system (discussed in Section 3), as well as
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➡ due to cubic non-linearity: fermion fluctuation term 
is a function of the photon field

➡ Landau-Ginzburg theory: expand to quartic order 
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• homogenous polariton equation of motion

follows M. H. Szymanska, J. Keeling, P. B. Littlewood,  arXiv:1206.1784
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• in particular: signs of the dissipative coefficients a2 > 0, b2 < 0

➡ in the case of population inversion              exciton fluctuation correction acts as pumpN0 < 0

➡ condensation threshold for homogeneous couplings and exciton 
energies gj = g, ✏j = ✏

➡ effective pump exceeds loss: polariton condensation instability
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/g2total inversion = j = 1, . . . , n

➡ fully analogous to a laser threshold
instability cured by non-linearity

loss 
dominates

pump 
dominates



Polariton Condensation and Spontaneous Symmetry Breaking

• generalize homogenous polariton equation of motion to inhomogeneous one

• valid for slow/long wavelength modes

• we write the noise field (omitted before)

�S

� q,x

!
= 0 ,

propagation elastic collisions
two-body losspump & loss rates

• Condensation: overdamped motion in Mexican hat potential
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• for dominant pump:
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• an instance of spontaneous symmetry breaking:

• Equation of motion/action has symmetry of global phase rotations
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Symmetry breaking and Goldstone Theorem

• Goal: understand the nature of the low momentum modes and comparison to equilibrium

• First key step: Goldstone theorem

• Obtain action from equation of motion by integration wrt. the noise field:

• this action manifestly has the symmetry / invariance under global phase rotations (U(1) symmetry)
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Symmetry breaking and Goldstone Theorem

field expectation value, 
“classical field”

fluctuation around 
“classical field”

sum over all possible 
fluctuation configurations

• NB: this obtains formally by Legendre transformation of 

• field equation: generalization of action principle

• Obtain action from equation of motion by integration wrt. the noise field:

• Introduce the effective action as the “action plus all fluctuations”
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• Goal: understand the nature of the low momentum modes and comparison to equilibrium

• First key step: Goldstone theorem

� 1
2 [(�� i)|�c(t,x)|2�c(t,x)�

⇤
q(t,x) + c.c.]

o



• simple proof of Goldstone theorem using the effective action

• Goal: Assume symmetry is broken => there exists a gapless mode (zero excitation energy cost/ 
zero damping at zero momentum) 

!(q = 0) = 0 ! = q = 0i.e. study

ei�[�
⇤
c,q,�c,q ] =

Z
D(�'⇤

c,q, �'c,q)e
iS[�⇤

c,q+�'⇤
c,q,�c,q+�'c,q ]

• decompose:

homogeneous:
zero freq. / mom. sector

non-homogeneous

➡ sufficient to analyze �h
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⌫
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xi�⌫
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, @
xi�⌫

, ...] ⌫ = c, q

• U(1) invariance all U(1) invariant combinations, 
but nothing else!

⇢µ = �⇤
⌫�⌫0) �h[�

⇤
⌫ ,�⌫ ] = �h[⇢µ]

µ = {cc; cq; qc; qq}

Symmetry breaking and Goldstone Theorem



• assume SSB 

• properties of excitation spectrum: R/A sectors of second derivative, 
gap/mass matrix:

choice of field coordinates (due to 
spontaneous SB: wlog)

��1

��2

stat. 
value:

= 0

�0

Symmetry breaking and Goldstone Theorem

�h[�
⇤
⌫ ,�⌫ ] = �h[⇢µ] ⇢µ = �⇤

⌫�⌫0

�c ⌘ �0 6= 0 �q = 0but

Mij ⌘
@2�h

@�i@�j

���
stat

=
X

µ

@2⇢µ
@�i@�j

@�h

@⇢µ
+
X

µ,

@⇢µ
@�i

@⇢
@�i

@2�h

@⇢µ@⇢

• key implication of broken symmetry: first term vanishes in R/A sectors 
due to homogenous “equation of motion”

@�h

@�i
=

X

µ

@⇢µ
@�i

@�h

@⇢µ

!
= 0 8i

in R/A sectors

➡ U(1) invariance of full theory implies existence of gapless mode (zero eigenvalue of mass matrix)

➡ excitation matrix must be of the form (exercise)

real: second derivatives of �, �hMR
ij = 2⇢20
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◆

⇢0 = �2
0



Nature of Low Momentum Dynamics

➡ NB: no reference to equilibrium or non-equilibrium nature
➡ but to symmetry and a qualitative property of the state (SSB)
➡ no information on the form of the low momentum modes

Consider a theory which is invariant under a continuous global symmetry transformation. 
Assume the symmetry is broken spontaneously. 
Then, there are gapless modes (Goldstone modes).

• Summary: Goldstone theorem

• now, construct the excitations

• most general form of excitation matrix in SSB phase

�PR(! = q = 0) = 0with

• for the above polariton action, we have explicitly

�PR(!,q2) = iẐ! � Âq2

PR(!,q) = �PR(!,q)�MR

with Ẑ, Â real 2x2 matrices

Ẑ =

✓
0 1
�1 0

◆
, Â =

1

2mph
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0 1
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MR
ij = 2⇢20
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Nature of Low Momentum Dynamics

➡ NB: no reference to equilibrium or non-equilibrium nature
➡ but to symmetry and a qualitative property of the state (SSB)
➡ no information on the form of the low momentum modes

Consider a theory which is invariant under a continuous global symmetry transformation. 
Assume the symmetry is broken spontaneously. 
Then, there are gapless modes (Goldstone modes).

• Summary: Goldstone theorem

• now, construct the excitations

• most general form of excitation matrix in SSB phase

�PR(! = q = 0) = 0with

• calculate excitation spectrum from poles of Green’s function or 

• but no matter how complicated, we always have diffusive behavior

�PR(!,q2) = iẐ! � Âq2

PR(!,q) = �PR(!,q)�MR

with Ẑ, Â real 2x2 matrices

detPR(!,q)
!
= 0

!(q) = �iDe↵ q
2
for q ! 0

De↵ > 0 for  > 0

MR
ij = 2⇢20

✓
� 0
i 0

◆

De↵ =
�

mph
in example above



Comparison to thermodynamic equilibrium

!(q) = �iDe↵ q
2
for q ! 0

• in the non-equilibrium situation, we found based on U(1) symmetry:

• in equilibrium symmetry broken phase (BEC), it is well known

!(q) = c|q| for q ! 0

diffusive Goldstone mode

propagating Goldstone (sound) mode

➡ the difference is traced back to the absence of exact particle number conservation out of equilibrium

• here: open system, incoherent particle loss and gain

• equilibrium: closed system, particle number conserved

• formally: additional U(1) symmetry in closed system

✓
'0
+(t,x)

'0
�(t,x)

◆
=

✓
ei↵+ 0
0 ei↵�

◆✓
'+(t,x)
'�(t,x)

◆
• indeed, two symmetry generators on the 

contour:

• we focused above on 

↵+ = ↵�
↵c = (↵+ + ↵�)/2 6= 0,

↵q = (↵+ � ↵�)/2 = 0
i.e.



Comparison to thermodynamic equilibrium

➡ the difference is traced back to the absence of exact particle number conservation out of equilibrium

!(q) = �iDe↵ q
2
for q ! 0

• in the non-equilibrium situation, we found based on U(1) symmetry:

• in equilibrium symmetry broken phase (BEC), it is well known

!(q) = c|q| for q ! 0

diffusive Goldstone mode

propagating Goldstone (sound) mode

• here: open system, incoherent particle loss and gain

• equilibrium: closed system, particle number conserved

• formally: additional U(1) symmetry in closed system

• closed system: additional invariance under 

• indeed: Noether charge for        is the particle number

• implication for mass matrix:

↵q
↵q

MR
ij = 2⇢20

✓
� 0
i 0

◆
purely real; plus 

further constraints on Ẑ, Â

• consequence: dominant hydrodynamic sound mode



Critical Phenomena and Universality 
(Equilibrium)

'



Critical Phenomena and Universality (Equilibrium)

'
at the critical point

• Universality: The art of systematically forgetting about details

Bose-Einstein Condensate planar magnets

⌧ = T�Tc
T ! 0

• The experimental witnesses: Critical exponents, e.g.
correlation length

⇠ ⇠ |⌧ |�⌫ ! 1

• The exponents:

⌫
⌘

“mass/gap exponent”

“anomalous dimension”

nontrivial statement: 
no more independent exponents * 

than these!
* finite T equilibrium

h�⇤(r)�(0)i ⇠ e�r/⇠

rd�2+⌘



'
• The physical picture: universality induced by divergent correlation length

Bose-Einstein Condensate planar magnets

Critical Phenomena and Universality (Equilibrium)

• Universality: The art of systematically forgetting about details

h�⇤(r)�(0)i

r
non-universal short distance universal scaling

⇠ r�2+d�⌘ ⇠ e�r/⇠

scaling cut off by finite 
correlation length

⇠(T � Tc) ⇠(T & Tc)



'
• The physical picture: universality induced by divergent correlation length

Bose-Einstein Condensate planar magnets

Critical Phenomena and Universality (Equilibrium)

• Universality: The art of systematically forgetting about details

r

T ! Tc

non-universal short distance universal scaling

⇠ r�2+d�⌘ ⇠ e�r/⇠

scaling cut off by finite 
correlation length

h�⇤(r)�(0)i

⇠(T � Tc) ⇠(T & Tc)



'

Wilson-Fisher fixed point

• The description: Renormalization group

Bose-Einstein Condensate planar magnets
other systems...

UV: microscopic physics

IR: long-wavelength 
physics
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 g
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g

crucial difference:

interacting systems = WF fixed point

non-int. systems = Gaussian fixed point 

⌫ = 1/2, ⌘ = 0

⌫, ⌘ non-rational

Critical Phenomena and Universality (Equilibrium)

• Universality: The art of systematically forgetting about details



Universality Classes (Equilibrium)

'
• Universality classes: Memory of symmetries is kept

Bose-Einstein Condensate planar magnets
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6=
• Symmetries: U(1) ' O(2)

phase rotations in BEC

“O(2) universality class” “Ising universality class”

Z2

trapped ions liquid-gas transition in 
carbon-dioxide

Digital Innsbruck
ion-trap quantum simulator

Blatt group (Innsbruck)
!"#$%

+ + +

complementary to analog QS with ions: 
Schätz, Monroe, Bollinger, Ospelkaus ...

theory: Porras, Cirac (2004), ...
Dienstag, 11. September 2012

'

~ 80 sta
ble elements

=> O(10^10) possib
le co

mpounds

~ 10^23 partic
les

but only a
 handful 

universa
lity 

classe
s



Criticality in Driven-Dissipative Many-Body 
Systems

L. Sieberer, S. Huber, E. Altman, SD, PRL 2013; 
in preparation



• Questions and challenges:

• polar molecules (Jun Ye Labs)

• open system Dicke models in cavity (Esslinger)/ circuit (Schoelkopf, 
Wallraff) QED, nanomechanical systems (Painter, Lehnert, Aspelmeyer)

single-, two-, ... body loss

• Physics: Understanding the nature of driven-dissipative phase transitions

• Methods:

• Construct efficient quantum field theoretical framework for 
out-of-equilibrium criticality

• Universality class: Can non-equilibrium conditions modify 
equilibrium criticality, given massive loss of memory?

• Thermalization of driven-dissipative systems?

• Decoherence?

Criticality in Driven-Dissipative Many-Body Systems

ei�[�] =

Z
D��eiSM [�+��]



Microscopic model: Many-Body Quantum Master Equation

• universal microscopic model: many-body master equation

@t⇢ = �i[H, ⇢] + L[⇢]

H =

Z
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�̂†
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( 4
2M � µ) �̂
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+ �
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
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x

[�̂2
x

⇢ �̂† 2
x

� 1
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† 2
x

�̂2
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, ⇢}]

single-, two-, ... body loss

single particle loss

�l

Z

x

[�̂
x

⇢ �̂†
x

� 1
2{�̂

†
x

�̂
x

, ⇢}] +

single particle pump

L[⇢] = �p

Z

x

[�̂†
x

⇢ �̂
x

� 1
2{�̂x

�̂†
x

, ⇢}] +

single particle pump

many-body 
system

• continuum of spatial degrees of freedom: infrared 
divergence

➡ second quantized operator formalism inappropriate

• single mode, H=0, semiclassical 
approximation: effective laser 
threshold equations

cf. Quantum Optics: cf. Many-Body Physics:

➡ need method transfer: develop efficient functional many-body techniques



The Theoretical Approach

Many-Body Master 
Equation

Microscopic Markovian 
Dissipative Action

translation 
table

Keldysh real time functional integral

@t⇢ = �i[H, ⇢] + L[⇢]

ei�[�] =

Z
D��eiSM [�+��]

many-body master equation

,

• Step 1: translation table

Markovian dissipative action

➡ Opens up the powerful toolbox of quantum field theory to 
driven-dissipative systems

✓.



The Theoretical Approach
• Step 2: Canonical power counting: Classification of relevance of 

interactions at criticality

➡ Microscopic quantum model reduces exactly to 
phenomenological, classical stochastic model

Mesoscopic Dissipative 
Action

power counting

Many-Body Master 
Equation

Microscopic Markovian 
Dissipative Action

translation 
table
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` ⇠ k�1

` ! 1
k ! 0

coarse graining length coarse graining 
momentum



The Theoretical Approach
• Step 3: Run functional renormalization group flow

Mesoscopic Dissipative 
Action

power counting

Many-Body Master 
Equation

Microscopic Markovian 
Dissipative Action

translation 
table

Long Wavelength 
Effective Action

RG flow

@k�k =
i

2
Tr

⇣
�(2)
k +Rk

⌘�1
@kRk

�

ei�[�] =

Z
D��eiSM [�+��]

,

Keldysh real time functional integral

Functional Renormalization Group equation

Wetterich, Z. Phys. 93
Keldysh closed syst.: 

Gasenzer&, Phys. Lett. 08
Berges&, Nucl. Phys. B 09

➡ Discussion of the key phenomena:
➡ Decoherence
➡ Thermalization
➡ Universality



Microscopic markovian dissipative action
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Markovian dissipative action
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• Gaussian sector: inverse 
Green’s function

• retarded/advanced

• Keldysh component

• Relation to single-particle observables:
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Structuring the problem by power counting
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Markovian dissipative action

S =
Z

Q

⇣

f⇤
c , f⇤

q

⌘

✓

0 DA(Q)
DR(Q) DK

◆✓

fc
fq

◆

+ Sint

I propagators in symmetric phase
✓

GK(Q) GR(Q)
GA(Q) 0

◆

=

✓

0 DA(Q)
DR(Q) DK

◆�1
=

✓

�DK/
�

DR(Q)DA(Q)
�

1/DR(Q)
1/DA(Q) 0

◆

I inverse propagators, 2MB = 1

DR(Q) = w � q2 � e0 + i
�

gl � gp
�

/2 =
⇣

DA(Q)
⌘†

DK = i
�

gl + gp
�

I pole of GR(Q)/zero of DR(Q): w = q2 + e0 � i
�

gl � gp
�

/2
I vertices

I Markovian dissipative processes ) time-local imaginary parts

PK = i (�l + �p)

• retarded/advanced

• Keldysh component

! 0

⇠ q2

⇠ q0

• Gaussian sector at criticality:

PR(!,q) = ! � q2 � µ+ i (�l � �p) /2

[�c] =
d� 2

2
< [�q] =

d+ 2

2• Canonical field dimensions:

• action is dimensionless: phase         in the functional integral

• quadratic/Gaussian sector: scaling dimensions of inverse Green’s function known 

• intuitive: high order local couplings not relevant at large distances

eiS



Structuring the problem by power counting
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• retarded/advanced

• Keldysh component

! 0

⇠ q0

[�c] =
d� 2

2
< [�q] =

d+ 2

2• Canonical field dimensions:

➡ Local vertices with more than two quantum fields are irrelevant in the RG sense in d > 2

➡ massive diagrammatic simplification
➡ identical to phenomenological models of exciton-polariton condensates 

(Wouters and Carusotto PRL 06; Szymanska, Keeling, Littlewood PRL 04)
➡ Original quantum problem becomes a classical stochastic field theory

two quantum fields
five classical fields

PK = i (�l + �p)

⇠ q2PR(!,q) = ! � q2 � µ+ i (�l � �p) /2

• Gaussian sector at criticality:



Power counting and exciton-polariton model

➡ many microscopic models collapse to an effective low energy model
➡ form dictated by microscopic symmetries
➡ universality class to be determined by calculation

two quantum fields
five classical fields
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` ⇠ k�1
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k ! 0

coarse graining length coarse graining 
momentum

• example of “weak” universality

 driven-dissipative 
Gross-Pitaevski 

equation

Mesoscopic Dissipative 
Action

power counting

Microscopic Markovian 
Dissipative Action

Long Wavelength 
Effective Action

RG flow

two-body quantum 
master equation

exciton-polariton 
models

universality 
class



Power Counting and “Classicality”

Many-Body Master 
Equation

Microscopic Markovian 
Dissipative Action

Mesoscopic Dissipative 
Action

translation 
table

power counting

• physical interpretation: reduction to classical problem in d > 2

• infrared mode occupation enhanced 

• same scaling as in thermal equilibrium:

distribution function

GK = GRF � FGA

fluctuation-dissipation relation
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F defined via

• equilibrium fluctuation-dissipation theorem
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= sgn(!), T = 0
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0

1

2

3

4

5

quantumclassical

2T

T ! 0

➡ no states but ground state occupied

➡  states with low energies highly occupied



• similar findings: Mitra et al., PRL 2006 (Ising model); Mitra and Rosch, PRL 
2010 (Kondo model)

Power Counting and “Classicality”

Many-Body Master 
Equation

Microscopic Markovian 
Dissipative Action

Mesoscopic Dissipative 
Action

translation 
table

power counting

• key differences to equilibrium relaxational models
Halperin and Hohenberg, RMP 76

➡ arbitrary complex coupling parameters, independent 
coherent and dissipative dynamics: driven system at 
mesoscopic scale

➡ thermal equilibrium not enforced

• physical interpretation: reduction to classical problem in d > 2

• infrared mode occupation enhanced 

• same scaling as in thermal equilibrium 

distribution function

Long Wavelength 
Effective Action

RG flow

GK = GRF � FGA

fluctuation-dissipation relation
F ⇠ 1

!

Feq = 2T
!



A glimpse of the calculation

I Effective system dynamics: trace out baths

I 2nd quantized formalism not adequate to FRG!

I Keldysh functional integral approach

I Powerful field theory tools for
non-equilibrium systems

I FRG: introduce infrared cutoff k,
integrate out fast modes q > k

I Approach to critical point:
follow RG flow for k ! 0

I Critical exponents from
scaling behavior l ⇠ k�h

l

for k ! 0

Open System Functional RG

• Evaluation of functional integral via equivalent Functional RG equation adapted to 
open system

second field variation

@k�k =
i

2
Tr

⇣
�(2)
k +Rk

⌘�1
@kRk

�

infrared regulator

full effective action

Markovian dissipative action

Wetterich, 93

closed system Keldysh: 
Schoeller, Meden PRL 07

Gasenzer, Pawlowski, PLB 08; 
Berges, Hoffmeister, Nucl. Phys. B, 09

• solve functional differential equation approximately by systematic 
derivative expansion truncation

• ordering principle is power counting

coarse graining in real space = 
integrating out high modes in 

momentum space
mode elimination induces RG flow of 

coupling of effective action

�k=⇤ = S

�k=0 = �

Many-Body Master 
Equation

Microscopic Markovian 
Dissipative Action

Mesoscopic Dissipative 
Action

translation 
table

power counting

Long Wavelength 
Effective Action

RG flow
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• arbitrary complex running couplings allowed

• e.g. propagation and diffusion K = A+ iD

• includes all non-irrelevant operators (d = 3)

U = U(⇢c) =
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I propagation & diffusion K = A + iD
I potential U, rc = f⇤

c fc

U =
u
2
(rc � r0)

2 +
u3
6

(rc � r0)
3

I two-body collisions & loss u = l + ik
I three-body collisions & loss u3 = l3 + ik3

I “Keldysh mass” g

• explicit ansatz

• work in d=3

• Run the RG <=> follow how these couplings change with scale



Schematic RG flow

Re
fixed point

Im

FP action purely 
dissipative

➡ decoherence

non-perturbative initial flow

Im

Re

K

uu3

• initial values: �k⇡⇤0 ⇡ S

• particles propagate

A = Re[K] ⇡ 1 � D = Im[K]

• coherent collisions ~ two-body loss

• Flow in the complex plane of couplings 

• three-body couplings subleading

linearized IR flow
Re

Im

• universal domain encoding 
universality class



Emergence of universality in numerical evaluation

• Flow in the complex plane of couplings 
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Figure 1. Emergence of universality: Top panel: The flow of the
complex renormalized two-body coupling ũ2 = �̃+ i̃ (see Sec. VI A)
is attracted to the Wilson-Fisher fixed point ũ2⇤ = i5.308 irrespective
of the initial value ũ⇤. We show numerical solutions to the flow equa-
tions for rK⇤ = 10, ru3⇤ = 1, ̃3⇤ = 0.01, and values of ũ2⇤ lying on
a rectangle with sides �̃ 2 [0, 10], ̃ = 2, 10 and �̃ = 10, ̃ 2 [2, 10].
Fine-tuning of w⇤ close to criticality results in trajectories that ap-
proach the scaling solution before eventually being driven towards
the symmetric phase. Bottom panel: Flow of ̃ for various starting
values ̃⇤ = 0.1, 1, 2, . . . , 10. The other initial values are the same
as in the top panel, apart from ru2⇤ = 10. Dots on the lines indi-
cate the extent of the critical domain, which is set by the Ginzburg
scale (126).

Halperin (HH) [19]. Again, we find the dynamic exponents
to coincide with the one of an ab initio computation for one of
HH’s models (model A) – the non-equilibrium conditions do
not modify the dynamical critical behavior either. A stronger
physical consequence of this finding is discussed in the next
subsection.

The outer shell identified in [25] is new, however. The new
exponent ⌘r making up this shell physically describes univer-
sal decoherence as explained below. Crucially, it relates to the
dynamical model A in the same pattern as model A relates
to the classical O(2) model: It adds a new shell, but does not
“feed back” or modify the ones enclosed. This outer shell also
contains a certain fine-structure as discussed below.

Asymptotic thermalization of the distribution function –
Regarding the intermediate shell of the hierarchy, we not only
find z of model A unmodified by the non-equilibrium condi-
tions, but also the emergence of an “equilibrium symmetry”,
cf. Sec. IV. The symmetry is implied by the relation ⌘Z = ⌘�,
where ⌘Z and ⌘� are the anomalous dimension of the wave-
function renormalization and the noise strength, respectively,
cf. Sec. V. In turn, the presence of the symmetry implies a
fluctuation-dissipation theorem, or, more physically speaking,
a detailed balance condition.

In order to better understand this aspect, consider an equi-
librium problem with detailed balance. All subparts of the
system are thus in equilibrium with each other. This means
that we can choose an arbitrary bipartition of the system, av-
erage over or integrate out the degrees of freedom in one of
them, and determine the temperature in the remaining part:
No matter how the partition is chosen, we would find the same
temperature. In other words, temperature is partition invari-
ant in an equilibirum system. This statement is easily trans-
lated into a renormalization group language: The natural sys-
tem partitions are the momentum shells. Partition invariance
of the temperature thus becomes a scale invariance of tem-
perature under renormalization, which successively integrates
out high momentum shells. The “equilibrium symmetry” ex-
presses precisely this physical intuition.

In a non-equilibrium problem as ours, this property and the
associated symmetry are manifestly absent in general, i.e., at
arbitrary momentum scales. However, our results imply the
emergence of this symmetry in the universal critical domain
delimited by the Ginzburg scale. In order to quantify this
observation, we compute the scale dependence of an e↵ec-
tive temperature, entering the (non-equilibrium) fluctuation-
dissipation theorem, cf. Sec. IV. Indeed, we find non-
universal scale dependent behavior at high momentum scales,
while becoming universal and scale independent within the
Ginzburg domain, cf. Fig. 2. We may thus speak of an asymp-
totic low-frequency thermalization of the critical driven open
system.

Independence of the new critical exponent and maximality
of the extension – It is important to demonstrate the indepen-
dence of the new exponent: At a second order phase transition,
many critical exponents can be defined, each characterizing a
di↵erent observable. However, only few of them are indepen-
dent, i.e., cannot be expressed in terms of a smaller set by
means of scaling relations.

In our FRG approach, the independence of the four above
described exponents is reflected in the deep infrared behav-
ior of the flow equations. More precisely, it is expressed in a
block diagonal structure of the stability matrix encoding the
universal behavior in the vicinity of the Wilson-Fisher fixed
point, cf. Sec. VI: There are two blocks, and the lowest eigen-
value of each of them determines an independent critical ex-
ponent. In addition we have the independent anomalous di-
mension ⌘ and the dynamical exponent z. Moreover, a com-
plementary argument can be given from the opposite, ultravi-
olet limit of the problem.

To this end, recall that any independent critical exponent
must be related to a short-distance mass scale in the prob-
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Figure 1. Emergence of universality: Top panel: The flow of the
complex renormalized two-body coupling ũ2 = �̃+ i̃ (see Sec. VI A)
is attracted to the Wilson-Fisher fixed point ũ2⇤ = i5.308 irrespective
of the initial value ũ⇤. We show numerical solutions to the flow equa-
tions for rK⇤ = 10, ru3⇤ = 1, ̃3⇤ = 0.01, and values of ũ2⇤ lying on
a rectangle with sides �̃ 2 [0, 10], ̃ = 2, 10 and �̃ = 10, ̃ 2 [2, 10].
Fine-tuning of w⇤ close to criticality results in trajectories that ap-
proach the scaling solution before eventually being driven towards
the symmetric phase. Bottom panel: Flow of ̃ for various starting
values ̃⇤ = 0.1, 1, 2, . . . , 10. The other initial values are the same
as in the top panel, apart from ru2⇤ = 10. Dots on the lines indi-
cate the extent of the critical domain, which is set by the Ginzburg
scale (126).

Halperin (HH) [19]. Again, we find the dynamic exponents
to coincide with the one of an ab initio computation for one of
HH’s models (model A) – the non-equilibrium conditions do
not modify the dynamical critical behavior either. A stronger
physical consequence of this finding is discussed in the next
subsection.

The outer shell identified in [25] is new, however. The new
exponent ⌘r making up this shell physically describes univer-
sal decoherence as explained below. Crucially, it relates to the
dynamical model A in the same pattern as model A relates
to the classical O(2) model: It adds a new shell, but does not
“feed back” or modify the ones enclosed. This outer shell also
contains a certain fine-structure as discussed below.

Asymptotic thermalization of the distribution function –
Regarding the intermediate shell of the hierarchy, we not only
find z of model A unmodified by the non-equilibrium condi-
tions, but also the emergence of an “equilibrium symmetry”,
cf. Sec. IV. The symmetry is implied by the relation ⌘Z = ⌘�,
where ⌘Z and ⌘� are the anomalous dimension of the wave-
function renormalization and the noise strength, respectively,
cf. Sec. V. In turn, the presence of the symmetry implies a
fluctuation-dissipation theorem, or, more physically speaking,
a detailed balance condition.

In order to better understand this aspect, consider an equi-
librium problem with detailed balance. All subparts of the
system are thus in equilibrium with each other. This means
that we can choose an arbitrary bipartition of the system, av-
erage over or integrate out the degrees of freedom in one of
them, and determine the temperature in the remaining part:
No matter how the partition is chosen, we would find the same
temperature. In other words, temperature is partition invari-
ant in an equilibirum system. This statement is easily trans-
lated into a renormalization group language: The natural sys-
tem partitions are the momentum shells. Partition invariance
of the temperature thus becomes a scale invariance of tem-
perature under renormalization, which successively integrates
out high momentum shells. The “equilibrium symmetry” ex-
presses precisely this physical intuition.

In a non-equilibrium problem as ours, this property and the
associated symmetry are manifestly absent in general, i.e., at
arbitrary momentum scales. However, our results imply the
emergence of this symmetry in the universal critical domain
delimited by the Ginzburg scale. In order to quantify this
observation, we compute the scale dependence of an e↵ec-
tive temperature, entering the (non-equilibrium) fluctuation-
dissipation theorem, cf. Sec. IV. Indeed, we find non-
universal scale dependent behavior at high momentum scales,
while becoming universal and scale independent within the
Ginzburg domain, cf. Fig. 2. We may thus speak of an asymp-
totic low-frequency thermalization of the critical driven open
system.

Independence of the new critical exponent and maximality
of the extension – It is important to demonstrate the indepen-
dence of the new exponent: At a second order phase transition,
many critical exponents can be defined, each characterizing a
di↵erent observable. However, only few of them are indepen-
dent, i.e., cannot be expressed in terms of a smaller set by
means of scaling relations.

In our FRG approach, the independence of the four above
described exponents is reflected in the deep infrared behav-
ior of the flow equations. More precisely, it is expressed in a
block diagonal structure of the stability matrix encoding the
universal behavior in the vicinity of the Wilson-Fisher fixed
point, cf. Sec. VI: There are two blocks, and the lowest eigen-
value of each of them determines an independent critical ex-
ponent. In addition we have the independent anomalous di-
mension ⌘ and the dynamical exponent z. Moreover, a com-
plementary argument can be given from the opposite, ultravi-
olet limit of the problem.

To this end, recall that any independent critical exponent
must be related to a short-distance mass scale in the prob-

• Extent of universal regime delimited by 
Ginzburg scale
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⇣ �
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Ginzburg scale: fluctuations 
dominate over mean field 

two-body interaction
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universal scaling regime

exponential runaway 
(fine tuning to critical point)

initial conditions



Main Result: Hierarchical Structure of Non-Equilibrium Criticality

• The inner shell:

• describes static critical exponents

h�⇤(r, t = 0)�(0, t = 0)i ⇠ e�r/⇠

rd�2+⌘

⇠ ⇠ |⌧ |�⌫

⌘ ⇡ 0.039

⌫ ⇡ 0.716

➡ equilibrium exponents of O(2) model unmodified by non-
equilibrium condition 

➡ quantitative benchmark of our real time approach

cf. Guida and Zinn Justin, J. Phys A (1998)
5 loop order epsilon expansion ⌘ ⇡ 0.038(4)

• result coincides with ab initio equilibrium calculation



Main Result: Hierarchical Structure of Non-Equilibrium Criticality

• The intermediate shell:

• describes dynamic critical exponent

➡ also dynamical exponent of Model A unmodified by non-
equilibrium condition 

• introduced in the theory of dynamical critical phenomena 
(Model A - F)

• relaxation to thdyn. equilibrium built in

h�⇤(r = 0, t)�(r = 0, 0)i ⇠ 1

t(d�2+⌘Z)/2

Hohenberg and Halperin, RMP 76

⌘Z ⇡ 0.161

In
fo

• result coincides with ab initio Model A calculation



Asymptotic Low-Frequency Thermalization

• dynamic exponent coincides with equilibrium dynamical Model A

• stronger result: asymptotic thermalization of driven-dissipative system

<=> Temperature is invariant under the partition

• global thermal equilibrium: all subparts in equilibrium with each other

⇢
temperature T

⇢B = trA⇢
temperature T



Asymptotic Low-Frequency Thermalization

• dynamic exponent coincides with equilibrium dynamical Model A

• stronger result: asymptotic thermalization of driven-dissipative system

<=> Temperature is invariant under the partition

• global thermal equilibrium: all subparts in equilibrium with each other

⇢
temperature T

⇢B0 = trA0⇢
temperature T



Asymptotic Low-Frequency Thermalization

• dynamic exponent coincides with equilibrium dynamical Model A

• stronger result: asymptotic thermalization of driven-dissipative system

<=> Temperature is invariant under the partition

• global thermal equilibrium: all subparts in equilibrium with each other

q
x

qy

temperature T

<=> Temperature is scale invariantRG:

RG: tracing out momentum 
shells



Asymptotic Low-Frequency Thermalization

• dynamic exponent coincides with equilibrium dynamical Model A

• stronger result: asymptotic thermalization of driven-dissipative system

<=> Temperature is invariant under the partition

• global thermal equilibrium: all subparts in equilibrium with each other

q
x

qy<=> Temperature is scale invariant

temperature T
RG: tracing out momentum 

shells

➡ not true out of equilibrium
➡ not true for our driven-dissipative system      
    at high momenta

RG:



Novel non-equilibrium universality class

I Model A of Hohenberg & Halperin
P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

I Dynamics: relaxation to equilibrium

I Dynamical critical exponent
Z, g ⇠ k�hZ , hZ ⇡ 0.161

I Here: Universal low-frequency thermalization

Asymptotic Low-Frequency Thermalization

• dynamic exponent coincides with equilibrium dynamical Model A

• stronger result: asymptotic thermalization of driven-dissipative system

• we find a scale invariant effective temperature in the universal low-momentum regime: 
asymptotic thermalization

= const.

Ginzburg criterion
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Figure 2. Scale dependence at criticality of �̃/ (4 |Z|), which for
t ! �1 approaches a constant value that has the meaning of an
e↵ective temperature Te↵ , see Sec. IV C. Initial values are the same
as in Fig. 1, bottom panel.

lem [26]. Indeed, the length dimension of a two-point corre-
lation function is h�⇤(x)�(0)i ⇠ L2�d. This contrasts with the
observed long-distance behavior ⇠ |x|2�d+⌘. The reason for
this discrepancy must be a rooted in a compensating short dis-
tance scale, so that indeed h�⇤(x)�(0)i ⇠ a�⌘ |x|2�d+⌘ ⇠ L2�d.

Therefore, to determine the number of independent critical
exponents we only need to count the mass scales in the prob-
lem. The corresponding part of the action reads

�m =

Z

X

n ⇣

�⇤c, �
⇤
q

⌘

 

0 �µUV + i�UV
�µUV � i�UV i�UV

!  

�c
�q

!

(2)

+ f ( j⇤c�q + j⇤q�c + c.c.)
o

with real parameters µUV , �UV , �UV , f . �UV and f have direct
counterparts in the classical O(2) model, describing the tun-
ing parameter for the phase transition and an external mag-
netic field, respectively. They give rise to the two critical
exponents ⌫ (characterizing the divergence of the correlation
length) and ⌘ (the anomalous dimension of the static two-point
function). �UV is introduced in the theory of dynamical criti-
cal phenomena and is associated to the dynamical exponent in
the purely relaxational model A. In the full non-equilibrium
problem however, there is yet another mass scale µUV . This
scale is at the origin of the additional independent exponent
identified in [25].

There are two immediate implications of this discussion.
First, we conclude that the extension of criticality is maximal,
i.e., no more independent exponents will be found. This is due
to general requirements on the mass matrix above: the o↵-
diagonal elements must be hermitean conjugates; the lower
diagonal must be anti-hermitean; and the upper diagonal must
be zero due to the conservation of probability. Second, the
case of a discrete Z2 symmetry rules out an imaginary mass
term (�UV = 0), so that in this case no modification of the
above kind of the known equilibrium criticality can occur in
such systems. This concerns, for example, open Dicke mod-
els [2, 3].

Non-Equilibrium character and fine-structure of the outer
shell – Non-Equilibrium conditions are characterized by the
absence of the equilibrium symmetry discussed in Sec. IV. In
particular, the simultaenous presence of coherent (reversible)
and dissipative (irreversible) couplings are not indicative of a
distinction between equilibrium and non-equilibrium. How-
ever, as explained in Sec. IV the symmetry implies a geomet-
ric constraint on the location of the couplings in the complex
plane: In an equilibrium system, all couplings must lie on a
single ray, cf. Fig. 3. No such constraint is present out-of-
equilibrium.

As shown in Sec. ??, this gives rise to a fine-structure in
the outer shell, determining the drive exponent ⌘c. The latter
is determined by the slowest flow of the couplings towards
the imaginary axis (where the Wilson-Fisher fixed point is
located), i.e., by the lowest eigenvalue in the corresponding
block of the stability matrix. Clearly, the equilibrium situ-
ation with all couplings on a single ray is contained in the
more general non-equilibrium case, as it may be viewed as
one of the eigenvectors of the more general situation. We find
in Sec. ?? that the eigenvalue associated to the symmetry con-
strained equilibrium flow is not the smallest one. The lowest
eigenvalue, therefore, manifestly describes non-equilibrium
physics. The physical understanding of this finding can thus
be seen as a consequence of the independence of coherent
and dissipative dynamics, which generically give rise to non-
equilibrium conditions, where real and imaginary parts are not
related to each other, as they result from di↵erent physical ori-
gins.

While this demonstrates the non-equilibrium character con-
ceptually, the equilibrium situation constructed in the above
way may seem a bit academic. In fact, the locking of the ra-
tios of all coherent vs. dissipative couplings amounts to an
unrealistic fine-tuning. Indeed, there is a second, much more
physical di↵erence of our setting to the standard equilibrium
Bose condensation transition, provided by the presence of an
exact particle number conservation in the latter – and only the
latter – case. It can be seen that the exact particle number
conservation rules out a finite �UV mass term.2 Therefore, the
standard equilibrium Bose condensation transition only ex-
hibits three independent exponents, and no counterpart to ⌘c.
However, as an additional consequence of the exact particle
number conservation additional slow modes occur at critical-
ity, which modify the dynamical exponent, which is given by
the one of model E, instead of model A.

In summary, the di↵erences between our driven and the
conventional equilibrium Bose condensation transition di↵er
in both the value of the dynamical exponent and the existence
of the drive exponent, and therefore are rather substantial.

Interpretation and observability of the new exponent –
The new critical exponents describes the universal flow be-
havior of all possible ratios of coherent vs. dissipative cou-
plings (real vs. imaginary parts) to zero upon moving to larger

2 It may – and does – occur as a regularization, meaning however that it has
to be sent to zero in such a way that it does not a↵ect any physical result.

Te↵

flow to long wavelength/small 
momenta

NB: must be constant in equilibrium

Ginzburg scale

numerical evaluation

�G ⇡
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4⇡D3/2
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Novel non-equilibrium universality class

I Model A of Hohenberg & Halperin
P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

I Dynamics: relaxation to equilibrium

I Dynamical critical exponent
Z, g ⇠ k�hZ , hZ ⇡ 0.161

I Here: Universal low-frequency thermalization

Thermalization: Formal reason
Complex plane of couplings

linearized IR flow

Re

Im

Aron et al., J. Stat. Mech. (2010); adapted to 
real time functional integral

• IR flow of noise and dynamical couplings locked

• emergent “equilibrium” symmetry of 

�c(t,x) ! �c(�t,x)
i ! �i

Te↵ =
�̄

4|Z|

�k!0 =

Z

X

�
�⇤
c iZ@t�q + c.c.+ i�̄�⇤

q�q

 
+ ...

i�k!0

• associated Ward identity implies classical FDT with distribution function

effective temperature

F =
2Te↵

!

⌘Z(g⇤) = ⌘�̄(g⇤)

Z ⇠ k⌘Z , � ⇠ k⌘�̄

�q(t,x) ! �q(�t,x) + 2|Z2|
�̄ �z@t�c(�t,x)

• interpretation: (Time reversal) o (Time translations) 



Main Result: Hierarchical Structure of Non-Equilibrium Criticality

• The outer shell:

• describes fadeout of coherent vs. dissipative 
dynamics: universal decoherence

• we show:

e.g. A
D ⇠ k�⌘r �

 ⇠ k�⌘r

diffusion

coherent 
propagation

two-body elastic 
collision

two-body loss

⌘r ⇡ �0.101

➡ exponent is new and independent of the others
➡ the extensions is maximal (no more independent 

exponents will be found)
➡ defines a new non-equilibrium universality class

• we find:



• block diagonal form of linearized flow near fixed point
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Independence of drive exponent

• Argument 1: Infrared

non-equilibrium relaxational equilibrium O(2)

• 4 independent eigenvalues 

• structure protected “diagrammatically” (d = 3)

⌫
⌘
⌘Z
⌘r

mass exponent
anomalous dimension
dynamical exponent
drive exponent



h�⇤(r)�(0)i ⇠ L2�d ⇠ a�⌘r2�d+⌘

Independence of drive exponent, maximal extension

• Argument 2: Ultraviolet 

• the origin of each independent exponent must be associated to an UV scale

• classical O(2) model: (imaginary) mass term, real source term:

• Model A: plus Keldysh mass term (temperature):

• driven model: plus real mass term:

   2
+ 1 
+ 1

4 independent exponents

• counting UV scales: mass matrix and source terms

� =

Z

X

�
�̄⇤
c , �̄

⇤
q

�✓ 0 �µUV + i�UV

�µUV � i�UV �UV

◆✓
�̄c

�̄q

◆
+f(j⇤c �̄q + j⇤q �̄c + c.c.) + ...

➡ For N = 2 field components, there cannot be more independent critical exponents
➡ Extension of equilibrium criticality is maximal

e.g.

physical length 
dimension

experimentally observed 
scaling

a�⌘



Non-equilibrium universality class
• What is the most general microscopic dynamics compatible with stationary Gibbs ensemble?

• Proof 1: Stochastic equation of motion: mapping to Fokker-Planck equation, construct stationary solution 
(Graham 73)

h⇣⇤(t,x)⇣(t0,x0)i = 2T �(t� t0)�(x� x

0)

R � 0

@t� = [�1+ iR�z]
�H[�]

��† + ⇣

• Check: equilibrium symmetry still present for compatible dynamics 

• associated Ward identity implies classical Fluctuation-Dissipation theorem

• Proof 2 (symmetry): 

• Use equivalence of stochastic PDE to a functional integral (MSR construction)

Z =

Z
D(�q,�c) exp i

Z

X
�

†
q


i�z

✓
@t�c + (1� iR�z)

�H[�c]

��†
c

◆
+ iT�†

q�q

�

• Variant 2 allows comparison with driven case:
➡ Equilibrium symmetry absent in general non-equilibrium case



Non-equilibrium universality class
• global thermal equilibrium is ensured by equilibrium symmetry: 

equilibrium dynamics

Im

Im

ReK

uu3

Re

Re

K

u

u3

non-equilibrium dynamics

• eigenvalue of flow speed

⌘r ⇡ �0.101⌘R ⇡ �0.143

➡ equilibrium and driven systems are in different universality classes
➡ physical reason: independence of coherent and dissipative dynamics
➡ formal reason: difference in symmetry

K

u

u3

Im

Re

initial flow 

infrared flow 
K

u

• lowest eigenvalue

sym
metry 

protecte
d

no sym
metry



Observable consequences of driven criticality

• experiments probing the dynamical single-particle renormalized response:

• ultracold atoms: RF spectroscopy (Jin group, Nature 08)

• exciton-polariton systems: homodyne detection (Deveaud-Pledran group, PRL 11)

non-universal constants

! ⇡ A0|q|2.22 � iD0|q|2.12 peak position and width

⌘D = ⌘D̄ � ⌘Z

measured independently

GR(!,q) =
1

! �A0|q|2�⌘r�⌘D + iD0|q|2�⌘D

ReGR(!,q), ImGR(!,q)

• necessary resolution: extent of critical domain from Ginzburg criterion

distance from phase 
transition 

• fluctuation dominated for D ⇠ �2n2,2n2�G ⇡
⇣ �

4⇡D3/2

⌘2



Directions

• 2D: exciton-polariton systems as laboratories of nonequilibrium statistical mechanics

• Disordered Dicke models in optical cavities: Open system quantum spin glasses (M. Buchhold, P. Strack, 
S. Sachdev, S. Diehl, PRA 13)

• Understanding of thermalization by renormalization? (with L. Sieberer, L. He...)

• Quantum effects in structural glasses? (with M. Buchhold, W. Lechner, P. Zoller...)

• Universality class of superfluid turbulence? (with I. Boettcher, J. Berges, J. Pawlowski, T. Gasenzer...)

from Roumpos et al., PNAS (2012)

disordered quasi-LRO

➡ Classification of universality in driven-dissipative systems

r

h�⇤(r)�(0)i

• Quantum criticality in driven open systems with tailored dynamics 

• Different symmetries: N = 1: Driven Rydberg ensembles? (Schauss et al., Nature 2012)

• Systems with coherent forcing (Jaynes-Cummings, Nissen et al., PRL 2012)

• Interacting fermionic systems (Eisert, Prosen, 2010, Hoening, Moos, Fleischhauer, PRA 2012)

L. Sieberer, J. Toner, S. Diehl, E. Altman, in preparation

algebraic quasi-long range order 
(Kosterlitz-Thouless phase)

non-equilibrium 
disordered  (rough) 

phase

�⇤

equilibrium Wilson-
Fisher

equilibrium 
Gaussian

non-equilibrium  
KPZ

• equilibrium fixed point unstable in 2D
• KPZ nixed point relevant 



Summary: Universality in driven-dissipative systems

• Hierarchical structure of criticality with no modification of inner shells:

• static sector

• classical O(2) model

• dynamical sector

• asymptotic low frequency thermalization

• Halperin-Hohenberg Model A 
⌘Z = ⌘�̄

• competing unitary and dissipative dynamics

• universal long-wavelength decoherence

• measured by an independent critical exponent

• driven-dissipative systems define new out-of equilibrium universality class

• independence of coherent/dissipative dynamics

• different symmetries compared to equilibrium





Open Quantum Systems as Driven Systems

|g⟩

|e⟩

Γ

• Most (all?) of the non-equilibrium features to be discussed root
  in the driven nature of quantum optical systems 

• Consider two-level system:
• without drive, upper level inaccessible
• drive / pump means to put in large amount of energy. Does      

       not happen “spontaneously”
• large scale separation: bath may look as zero temperature  

       reservoir though it is not (cf. radiation field)

• Implications:
• no obedience of the second law of thermodynamics (state purification)
• independent unitary and dissipative dynamics (different physical origins)
• no guarantee for detailed balance, once unitary and dissipative dynamics compete
• NB: contrasts equilibrium: relaxational (dissipative) and reversible (coherent) dynamics have

       the same origin (Hamiltonian)

➡ such conditions may be achieved in many-body systems as well (though not generic)       

Part I

Part II
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Keldysh functional integral

• real-time partition function:

= tr Û(tf, ti)⇢(ti)Û(ti, tf)

Z = tr⇢ = tr⇢(ti) = 1
ti = �1tf = +1

Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�

iGC (X, X0) = tr
n

TC
⇣

ŷ(X)ŷ†(X0)
⌘

r̂(t�)
o

= tr
n

Û(t�, t+)Û(t+, t)ŷ(x)Û(t, t0)ŷ†(x0)Û(t0, t�)r̂(t�)
o

=
Z

D(y⇤, y)y(X)y(X0)eiS[y⇤ ,y]

I ±-basis

y ) (y+, y�)

S =
Z

C
dt

Z

x

L[y⇤, y] ) S =
Z t+

t�
dt

Z

x

(L[y⇤
+, y+]�L[y⇤

�, y�])

GC )
✓

G++ G+�
G�+ G��

◆

L. V. Keldysh, Sov. Phys. JETP 20,1018-26 (1965)

+ contour

- contour

= tr Û(ti, tf)Û(tf, ti)⇢(ti)

time evolution operator Û(tf, ti) = e�iH(tf�ti)

= tr Û(tf, ti)⇢(ti)Û†(tf, ti)

➡ density operator transforms as matrix under time evolution

➡ Keldysh functional integral: Trotterize on both sides / contours, insert coherent state 
completeness relations
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Keldysh functional integral

• real-time partition function:

- contour+ contour

= tr Û(tf, ti)⇢(ti)Û†(tf, ti)

=

Z
D�+D��e

iS[�+,��]

ti = �1tf = +1

Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�

iGC (X, X0) = tr
n

TC
⇣

ŷ(X)ŷ†(X0)
⌘

r̂(t�)
o

= tr
n

Û(t�, t+)Û(t+, t)ŷ(x)Û(t, t0)ŷ†(x0)Û(t0, t�)r̂(t�)
o

=
Z

D(y⇤, y)y(X)y(X0)eiS[y⇤ ,y]

I ±-basis

y ) (y+, y�)

S =
Z

C
dt

Z

x

L[y⇤, y] ) S =
Z t+

t�
dt

Z

x

(L[y⇤
+, y+]�L[y⇤

�, y�])

GC )
✓

G++ G+�
G�+ G��

◆

L. V. Keldysh, Sov. Phys. JETP 20,1018-26 (1965)

+ contour

- contour

= tr Û(ti, tf)Û(tf, ti)⇢(ti) = tr Û(tf, ti)⇢(ti)Û(ti, tf)

Z = tr⇢ = tr⇢(ti) = 1

Trotter decomposition in 
basis of coherent states

Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�

iGC (X, X0) = tr
n

TC
⇣

ŷ(X)ŷ†(X0)
⌘

r̂(t�)
o

= tr
n

Û(t�, t+)Û(t+, t)ŷ(x)Û(t, t0)ŷ†(x0)Û(t0, t�)r̂(t�)
o

=
Z

D(y⇤, y)y(X)y(X0)eiS[y⇤ ,y]

I ±-basis

y ) (y+, y�)

S =
Z

C
dt

Z

x

L[y⇤, y] ) S =
Z t+

t�
dt

Z

x

(L[y⇤
+, y+]�L[y⇤

�, y�])

GC )
✓

G++ G+�
G�+ G��

◆

L. V. Keldysh, Sov. Phys. JETP 20,1018-26 (1965)

�⇤
+(t) �+(t

0)

• correlation functions: field insertions

Z[j+, j�] = hei
R
(j+�⇤

++j��⇤
�+c.c.)i

Z = h1i hTC [�̂†(t)�̂(t0)]i = �2Z[j+, j�]

�j+(t)�j⇤+(t
0)

���
j=0

Trotterization, coherent state insertion
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Keldysh functional integral approach

I given initial density matrix r̂(t�)
I time ordered correlation function, t+ > t > t0 > t�

iGC (X, X0) = tr
n

TC
⇣

ŷ(X)ŷ†(X0)
⌘

r̂(t�)
o

= tr
n

Û(t�, t+)Û(t+, t)ŷ(x)Û(t, t0)ŷ†(x0)Û(t0, t�)r̂(t�)
o

=
Z

D(y⇤, y)y(X)y(X0)eiS[y⇤ ,y]

I ±-basis

y ) (y+, y�)

S =
Z

C
dt

Z

x

L[y⇤, y] ) S =
Z t+

t�
dt

Z

x

(L[y⇤
+, y+]�L[y⇤

�, y�])

GC )
✓

G++ G+�
G�+ G��

◆

L. V. Keldysh, Sov. Phys. JETP 20,1018-26 (1965)

Translation table: Operator vs. Functional Formulation

• Functional formalism (equivalent): Markovian dissipative action

5.1. KELDYSH FUNCTIONAL INTEGRAL FOR OPEN MANY-BODY
QUANTUM SYSTEMS 315

where we used the formula for the inner product of coherent states h�|�0i = e�⇤�0 ,
the continuum limit �t ! 0 and subsequently (formal) partial integration to arrive
at (5.1.12). Combining Eqs. (5.1.11) and (5.1.12) and performing the continuum
limit in both, we can formulate the time evolution between the points t = t0 and
t = t f in terms of the Markovian dissipative action

S =
Z t f

t0
dt
�

�⇤+(t)i@t�+(t) � �⇤�(t)i@t��(t) � iL(�⇤+(t), �+(t), �
⇤
�(t), ��(t))

�

.

(5.1.13)
Note that this expression gives a straightforward “translation table” between a
given master equation and the corresponding microscopic action, with the above
mentioned subtleties on normal ordering.

In Eq. (5.1.13), two terms are still missing in the action S , namely the contri-
butions from the trace and the density matrix from (5.1.9). Both are infinitesimal
contributions from the edges of the temporal Keldysh strings and act only as a
regularization to the action (5.1.13). They can be neglected when we are only in-
terested in a stationary state of a dissipative problem and send t0 ! �1, t f ! 1.
For more details see [104].

The above discussion allows us to write the partition function as

Z = tr⇢(t) =
Z

D [�+,��] eiS [�+,��] = 1. (5.1.14)

Here, �± = (�±, �⇤±)T and the functional measure D [�+,��] (product of all indi-
vidual measures on the (+) and (�) contour) is defined in (5.1.13).

We emphasize that the markovian dissipative action (5.1.13) manifestly repre-
sents non-equilibrium physics. This can be tested based on a symmetry principle
that any quantum system in thermal equilibrium obeys [104]. The symmetry is
a functional representation of the Kubo-Martin-Schwinger condition of thermal
states in the operator formalism [105, 106, 107], which uses the formal similarity
of a thermal density matrix e��H with unitary evolution eiHt. This symmetry allows
to straighforwardly identify non-equilibrium conditions, diagnosing it directly on
the level of the microscopic action for the problem. It does not require the cal-
culation of a fluctuation-dissipation relation, which can be done in the frame of
approximations only. In particular, the symmetry is absent in a generic problem
with competing Hamiltonian and Markovian dissipative dynamics. This absence
can be traced back to the driving conditions which are inherent to a quantum mas-
ter equation, as argued in Sec. 2.1.1

Eq. (5.1.14) just expresses the conservation of probability, which is normal-
ized to one. In order to extract physical information in terms of correlation func-
tions, we may introduce source terms J� =

�

j�, j⇤�
�

on each of the contours, a

• operator right of density matrix -> - contour

• operator left of density matrix -> + contour

L = �i (H+ �H�)�
X

↵

↵

⇣
2L↵,+L

†
↵,� � L†

↵,+L↵,+ � L†
↵,�L↵,�

⌘

H± = H(�⇤
±,�±) etc.

+ contour

- contour
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the continuum limit �t ! 0 and subsequently (formal) partial integration to arrive
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Note that this expression gives a straightforward “translation table” between a
given master equation and the corresponding microscopic action, with the above
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In Eq. (5.1.13), two terms are still missing in the action S , namely the contri-
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The above discussion allows us to write the partition function as
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Here, �± = (�±, �⇤±)T and the functional measure D [�+,��] (product of all indi-
vidual measures on the (+) and (�) contour) is defined in (5.1.9).

We emphasize that the markovian dissipative action (5.1.13) manifestly repre-
sents non-equilibrium physics. This can be tested based on a symmetry principle
that any quantum system in thermal equilibrium obeys [104]. The symmetry is
a functional representation of the Kubo-Martin-Schwinger condition of thermal
states in the operator formalism [105, 106, 107], which uses the formal similarity
of a thermal density matrix e��H with unitary evolution eiHt. This symmetry allows
to straighforwardly identify non-equilibrium conditions, diagnosing it directly on
the level of the microscopic action for the problem. It does not require the cal-
culation of a fluctuation-dissipation relation, which can be done in the frame of
approximations only. In particular, the symmetry is absent in a generic problem
with competing Hamiltonian and Markovian dissipative dynamics. This absence
can be traced back to the driving conditions which are inherent to a quantum mas-
ter equation, as argued in Sec. 2.1.1

Eq. (5.1.14) just expresses the conservation of probability, which is normal-
ized to one. In order to extract physical information in terms of correlation func-
tions, we may introduce source terms J� =

�

j�, j⇤�
�

on each of the contours, a

• ... and partition function

�± = (�⇤
±,�±)

T

• Operator formalism: Markovian master equation

• Translation table:

Liouvillian operator

Liouvillian functional

@t⇢ = L ⇢ = �i [H, ⇢] +
X

↵

↵

�
2L↵⇢L

†
↵ � {L†

↵L↵, ⇢}
�
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